期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
MicroRNA-298 determines the radio-resistance of colorectal cancer cells by directly targeting human dual-specificity tyrosine(Y)-regulated kinase 1A
1
作者 Mei-Zhu Shen Yong Zhang +6 位作者 Fang Wu Mei-Zhen Shen Jun-Lin Liang Xiao-Long Zhang Xiao-Jian Liu Xin-Shu Li Ren-Sheng Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1453-1464,共12页
BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM... BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM To elucidate the role played by microRNA-298(miR-298)in CRC radio-resistance.METHODS To establish a radio-resistant CRC cell line,HT-29 cells underwent exposure to 5 gray ionizing radiation that was followed by a 7-d recovery period.The quantification of miR-298 levels within CRC cells was conducted through quantitative RT-PCR,and protein expression determination was realized through Western blotting.Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and proliferation by clonogenic assay.Radio-induced apoptosis was discerned through flow cytometry analysis.RESULTS We observed a marked upregulation of miR-298 in radio-resistant CRC cells.MiR-298 emerged as a key determinant of cell survival following radiation exposure,as its overexpression led to a notable reduction in radiation-induced apoptosis.Intriguingly,miR-298 expression exhibited a strong correlation with CRC cell viability.Further investigation unveiled human dual-specificity tyrosine(Y)-regulated kinase 1A(DYRK1A)as miR-298’s direct target.CONCLUSION Taken together,our findings underline the role played by miR-298 in bolstering radio-resistance in CRC cells by means of DYRK1A downregulation,thereby positioning miR-298 as a promising candidate for mitigating radioresistance in CRC. 展开更多
关键词 MicroRNA-298 Human dual-specificity tyrosine(Y)-regulated kinase 1A Colorectal cancer Radio-resistance p53 binding protein 1
下载PDF
PDRG1 at the interface between intermediary metabolism and oncogenesis 被引量:3
2
作者 Maríaángeles Pajares 《World Journal of Biological Chemistry》 CAS 2017年第4期175-186,共12页
PDRG1 is a small oncogenic protein of 133 residues. In normal human tissues, the p53 and DNA damageregulated gene 1(PDRG1) gene exhibits maximal expression in the testis and minimal levels in the liver. Increased expr... PDRG1 is a small oncogenic protein of 133 residues. In normal human tissues, the p53 and DNA damageregulated gene 1(PDRG1) gene exhibits maximal expression in the testis and minimal levels in the liver. Increased expression has been detected in several tumor cells and in response to genotoxic stress. High-throughput studies identified the PDRG1 protein in a variety of macromolecular complexes involved in processes that are altered in cancer cells. For example, this oncogene has been found as part of the RNA polymerase Ⅱ complex, the splicing machinery and nutrient sensing machinery, although its role in these complexes remains unclear. More recently, the PDRG1 protein was found as an interaction target for the catalytic subunits of methionine adenosyltransferases. These enzymes synthesize S-adenosylmethionine, the methyl donor for, among others, epigenetic methylations that occur on the DNA and histones. In fact, downregulation of S-adenosylmethionine synthesis is the first functional effect directly ascribed to PDRG1. The existence of global DNA hypomethylation, together with increased PDRG1 expression, in many tumor cells highlights the importance of this interaction as one of the putative underlying causes for cell transformation. Here, we will review the accumulated knowledge on this oncogene, emphasizing the numerous aspects that remain to be explored. 展开更多
关键词 Epigenetic modifications GLUTATHIONE Methylation ONCOgeneS Intermediary metabolism p53 and DNA damage-regulated gene 1 protein complexes R2Tp/prefoldin complex S-adenosylmethionine synthesis Redox stress
下载PDF
STUDY OF ECK GENE EXON-3 FROM HUMAN NORMAL TISSUE AND BREAST CANCER CELL LINE
3
作者 李瑶琛 孔令洪 +1 位作者 王一理 司履生 《Journal of Pharmaceutical Analysis》 SCIE CAS 2003年第1期66-70,共5页
Objective To establish a method cloning the exon 3 of eck gene from normal tissue and ZR 75 1 cell line (a human breast cancer cell line)and study whether these genes exist mutant. Methods Designed a pair of s... Objective To establish a method cloning the exon 3 of eck gene from normal tissue and ZR 75 1 cell line (a human breast cancer cell line)and study whether these genes exist mutant. Methods Designed a pair of specific primers and amplified the exon 3 of eck gene fragment from the extracted genomic DNA derived from normal epithelial cells from skin tissue and ZR 75 1 cell line respectively by PCR technique. Transformed the E.coil. JM109 with recombinant plamids constructed by inserting the amplified fragments into medium vector pUCm T and sequenced these amplified fragments after primary screening of endonuclease restriction digestion and PCR amplification. Results ① Obtained the genomic DNA of human normal epithelial cells and ZR 75 1 cell line respectively. ② Obtained the amplified fragments of human exon 3 of eck gene through PCR technique. ③ Obtained the cloning vectors of exon 3 of eck gene of human normal epithelial cells and ZR 75 1 cell line respectively. ④ ZR 75 1 cell line exists mutation of nucleotides. Conclusion Successfully established the method of cloning the human exon 3 of eck gene and found some mutations in the detected samples. This study lays a foundation for further studying the function of eck gene in tumorgenesis. 展开更多
关键词 eck(ephA2) gene gene cloning polymerase chain reaction p53 protein ZR 75 1 cell line
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部