BACKGROUND Necroptosis has emerged as a novel molecular pathway that can be targeted by chemotherapy agents in the treatment of cancer.OSW-1,which is derived from the bulbs of Ornithogalum saundersiae Baker,exerts a w...BACKGROUND Necroptosis has emerged as a novel molecular pathway that can be targeted by chemotherapy agents in the treatment of cancer.OSW-1,which is derived from the bulbs of Ornithogalum saundersiae Baker,exerts a wide range of pharmaco-logical effects.AIM To explore whether OSW-1 can induce necroptosis in colorectal cancer(CRC)cells,thereby expanding its range of clinical applications.METHODS We performed a sequence of functional experiments,including Cell Counting Kit-8 assays and flow cytometry analysis,to assess the inhibitory effect of OSW-1 on CRC cells.We utilized quantitative proteomics,employing tandem mass tag label-ing combined with liquid chromatography-tandem mass spectrometry,to analyze changes in protein expression.Subsequent bioinformatic analysis was conducted to elucidate the biological processes associated with the identified proteins.Transmission electron microscopy(TEM)and immunofluorescence studies were also performed to examine the effects of OSW-1 on necroptosis.Finally,western blotting,siRNA experiments,and immunoprecipitation were employed to evaluate protein interactions within CRC cells.RESULTS The results revealed that OSW-1 exerted a strong inhibitory effect on CRC cells,and this effect was accompanied by a necroptosis-like morphology that was observable via TEM.OSW-1 was shown to trigger necroptosis via activation of the RIPK1/RIPK3/MLKL pathway.Furthermore,the accumulation of p62/SQSTM1 was shown to mediate OSW-1-induced necroptosis through its interaction with RIPK1.CONCLUSION We propose that OSW-1 can induce necroptosis through the RIPK1/RIPK3/MLKL signaling pathway,and that this effect is mediated by the RIPK1-p62/SQSTM1 complex,in CRC cells.These results provide a theoretical foundation for the use of OSW-1 in the clinical treatment of CRC.展开更多
Autophagy plays a pivotal role in diverse biological processes,including the maintenance and differentiation of neural stem cells(NSCs).Interestingly,while complete deletion of Fip200 severely impairs NSC maintenance ...Autophagy plays a pivotal role in diverse biological processes,including the maintenance and differentiation of neural stem cells(NSCs).Interestingly,while complete deletion of Fip200 severely impairs NSC maintenance and differentiation,inhibiting canonical autophagy via deletion of core genes,such as Atg5,Atg16l1,and Atg7,or blockade of canonical interactions between FIP200 and ATG13(designated as FIP200-4A mutant or FIP200 KI)does not produce comparable detrimental effects.This highlights the likely critical involvement of the non-canonical functions of FIP200,the mechanisms of which have remained elusive.Here,utilizing genetic mouse models,we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1,primarily via TAX1BP1 in NSCs.Conditional deletion of Tax1bp1 in fip200hGFAP conditional knock-in(cKI)mice led to NSC deficiency,resembling the fip200hGFAP conditional knockout(cKO)mouse phenotype.Notably,reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation.Conversely,a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration.Furthermore,conditional deletion of Tax1bp1 in fip200hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200hGFAP cKO mice.Collectively,these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function,presenting novel therapeutic targets for neurodegenerative diseases.展开更多
BACKGROUND Overexpression of SQSTM1(sequestosome 1,P62)and nuclear factor-κB(NF-κB)plays an important role in the invasion and metastasis of a variety of malignant tumors.AIM To explore the expression of P62 and NF-...BACKGROUND Overexpression of SQSTM1(sequestosome 1,P62)and nuclear factor-κB(NF-κB)plays an important role in the invasion and metastasis of a variety of malignant tumors.AIM To explore the expression of P62 and NF-κB in pancreatic cancer and their relationship with clinicopathological features.METHODS The expression levels of P62 and NF-κB were analyzed by immunohistochemistry with a tissue chip containing 40 cases of human pancreatic carcinoma.Then we analyzed the correlation among P62 expression,phospho-P65 expression,and clinicopathological features of pancreatic carcinoma samples.RESULTS P62 expression was mainly observed in the cytoplasm of pancreatic carcinoma cells.Phosphorylated P65(phospho-P65)was mainly expressed in the nucleus and cytoplasm of pancreatic carcinoma cells.There was a significant difference in P62 expression among T stages.And a significant difference in phosphor-P65 expression among pathology types was noted.In the cases with strongly positive P62 expression,significant differences were found in age.And there were significant differences in T stage and tumor-node-metastasis stage in the cases with strongly positive phosphor-P65 expression.CONCLUSION In pancreatic carcinoma,P62 expression is significantly correlated with T stage.It may be a valuable malignant indicator for human pancreatic carcinoma.展开更多
文摘目的 基于c-Jun氨基末端激酶(JNK)-p62/螯合体(SQSTM1)信号通路探讨糖肾煎对2型糖尿病肾病(DN)大鼠足细胞的保护作用。方法 SD大鼠随机分成正常组、DN组、糖肾煎低、中、高[生药5、10、20 g/(kg·d)]剂量组(糖肾煎-L、M、H组)、二甲双胍组[100 mg/(kg·d)]。除正常组外,其余各组通过喂养高脂高糖饲料和腹腔注射链脲佐菌素(STZ)进行DN模型构建。药物干预结束后,检测大鼠血生化指标空腹血糖(FBG)、负荷后2 h血糖(P2 h BG)、血肌酐(SCr)、血尿素氮(BUN)水平;苏木素-伊红(HE)、六胺银(PASM)染色观察肾组织病理学变化;透射电镜(TEM)观察肾小球基底膜损伤和足细胞变化情况;Western印迹检测肾组织中微管相关蛋白1A/1B-轻链(LC)3、p-JNK、JNK、p62/SQSTM1、肾病蛋白(Nephrin)蛋白表达。结果 与正常组比较,DN组FBG、P2 h BG、SCr、BUN水平及p62/SQSTM1蛋白表达明显升高,LC3-Ⅱ、Nephrin蛋白表达和p-JNK/JNK明显降低(P<0.05);光镜下观察到肾小球缩小、管丛系膜明显扩张,并有基底膜增生增厚等现象;TEM下观察到肾小球基底膜增厚、足细胞排列紊乱、形态改变、足突融合等现象。与DN组比较,糖肾煎-L、M、H组和二甲双胍组FBG、P2 h BG、SCr、BUN水平及p62/SQSTM1蛋白表达明显降低,LC3-Ⅱ、Nephrin蛋白表达和p-JNK/JNK明显升高(P<0.05);并且肾小球基底膜增厚、足细胞足突融合等情况均获得一定程度减轻。结论 糖肾煎对2型DN大鼠足细胞具有一定保护作用,可能是通过调控JNK-p62/SQSTM1信号通路,提高足细胞自噬,从而起到肾脏保护功效。
基金Supported by the Natural Science Foundation of Liaoning Province,No.2022-MS-330and Key Projects in Liaoning Province,No.2020JH2/10300046.
文摘BACKGROUND Necroptosis has emerged as a novel molecular pathway that can be targeted by chemotherapy agents in the treatment of cancer.OSW-1,which is derived from the bulbs of Ornithogalum saundersiae Baker,exerts a wide range of pharmaco-logical effects.AIM To explore whether OSW-1 can induce necroptosis in colorectal cancer(CRC)cells,thereby expanding its range of clinical applications.METHODS We performed a sequence of functional experiments,including Cell Counting Kit-8 assays and flow cytometry analysis,to assess the inhibitory effect of OSW-1 on CRC cells.We utilized quantitative proteomics,employing tandem mass tag label-ing combined with liquid chromatography-tandem mass spectrometry,to analyze changes in protein expression.Subsequent bioinformatic analysis was conducted to elucidate the biological processes associated with the identified proteins.Transmission electron microscopy(TEM)and immunofluorescence studies were also performed to examine the effects of OSW-1 on necroptosis.Finally,western blotting,siRNA experiments,and immunoprecipitation were employed to evaluate protein interactions within CRC cells.RESULTS The results revealed that OSW-1 exerted a strong inhibitory effect on CRC cells,and this effect was accompanied by a necroptosis-like morphology that was observable via TEM.OSW-1 was shown to trigger necroptosis via activation of the RIPK1/RIPK3/MLKL pathway.Furthermore,the accumulation of p62/SQSTM1 was shown to mediate OSW-1-induced necroptosis through its interaction with RIPK1.CONCLUSION We propose that OSW-1 can induce necroptosis through the RIPK1/RIPK3/MLKL signaling pathway,and that this effect is mediated by the RIPK1-p62/SQSTM1 complex,in CRC cells.These results provide a theoretical foundation for the use of OSW-1 in the clinical treatment of CRC.
基金National Natural Science Foundation of China(U2004138,81773132,81820108021)University Excellent Teaching Team of“Qinglan Project”in Jiangsu Province(2022-25)+1 种基金Henan Province Key Research and Development Project(232102521028)Excellent Youth Foundation of Henan Scientific Committee(21230040016)。
文摘Autophagy plays a pivotal role in diverse biological processes,including the maintenance and differentiation of neural stem cells(NSCs).Interestingly,while complete deletion of Fip200 severely impairs NSC maintenance and differentiation,inhibiting canonical autophagy via deletion of core genes,such as Atg5,Atg16l1,and Atg7,or blockade of canonical interactions between FIP200 and ATG13(designated as FIP200-4A mutant or FIP200 KI)does not produce comparable detrimental effects.This highlights the likely critical involvement of the non-canonical functions of FIP200,the mechanisms of which have remained elusive.Here,utilizing genetic mouse models,we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1,primarily via TAX1BP1 in NSCs.Conditional deletion of Tax1bp1 in fip200hGFAP conditional knock-in(cKI)mice led to NSC deficiency,resembling the fip200hGFAP conditional knockout(cKO)mouse phenotype.Notably,reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation.Conversely,a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration.Furthermore,conditional deletion of Tax1bp1 in fip200hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200hGFAP cKO mice.Collectively,these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function,presenting novel therapeutic targets for neurodegenerative diseases.
文摘BACKGROUND Overexpression of SQSTM1(sequestosome 1,P62)and nuclear factor-κB(NF-κB)plays an important role in the invasion and metastasis of a variety of malignant tumors.AIM To explore the expression of P62 and NF-κB in pancreatic cancer and their relationship with clinicopathological features.METHODS The expression levels of P62 and NF-κB were analyzed by immunohistochemistry with a tissue chip containing 40 cases of human pancreatic carcinoma.Then we analyzed the correlation among P62 expression,phospho-P65 expression,and clinicopathological features of pancreatic carcinoma samples.RESULTS P62 expression was mainly observed in the cytoplasm of pancreatic carcinoma cells.Phosphorylated P65(phospho-P65)was mainly expressed in the nucleus and cytoplasm of pancreatic carcinoma cells.There was a significant difference in P62 expression among T stages.And a significant difference in phosphor-P65 expression among pathology types was noted.In the cases with strongly positive P62 expression,significant differences were found in age.And there were significant differences in T stage and tumor-node-metastasis stage in the cases with strongly positive phosphor-P65 expression.CONCLUSION In pancreatic carcinoma,P62 expression is significantly correlated with T stage.It may be a valuable malignant indicator for human pancreatic carcinoma.