<div style="text-align:justify;"> Neurotrophic factors, as well as their receptors are key players in the formation and development of the central nervous system. Like the sculptor’s incisor, they for...<div style="text-align:justify;"> Neurotrophic factors, as well as their receptors are key players in the formation and development of the central nervous system. Like the sculptor’s incisor, they form the neural networks and circuits of the future organism. The neurotrophic growth factor receptor p75ngfr interacts with sortilin, serves as a receptor for proform of neurotrophic factors and exhibits a proapoptotic effect in developing neurons—dorsal root ganglia neurons and brainstem norepinephrine neurons. p75ngfr is highly expressed in Locus Coeruleus norepinephrine neurons. Therefore, an important task for developing further methods of CNS gene therapy is the development of tools and molecular methods for suppressing p75ngfr expression in norepinephrine neurons. For this purpose, we’ve developed improved dCas9 vectors with Suntag system to suppress gene expression and enhance methylation of CpG islands. We used 10 times repetitive GCN peptide that were fused to dCas9. Single chain antibody against GCN peptide was fused to KRAB repressor or Dnmt3a catalytic domain. Expression specificity was achieved by using a promoter consisting of 8 repeated phox2a/2b binding sites. In this work, we’ve tested a set of guide RNAs targeting p75ngfr cpg island in the promoter. Usage of Suntag system led us to the conclusion that topological orientation and length of the final complex could influence on p75ngfr antisense transcript expression, and that sequence was established in the rat P3 brainstem. </div>展开更多
Although perifollicular repigmentation in the vitiligo lesions is owing to activation of follicular melanocyte stem cells and/or precursor cells followed by supplying matured melanocytes, the underlying mechanism of d...Although perifollicular repigmentation in the vitiligo lesions is owing to activation of follicular melanocyte stem cells and/or precursor cells followed by supplying matured melanocytes, the underlying mechanism of diffuse repigmentation on the whole vitiligo surface remains still unknown. In addition to the presence of remaining melanocytes, it is conceivable that dermal melanocyte precursor cells contribute to induce diffuse repigmentation after treatment. Therefore, we investigated here whether dermal and follicular melanocyte precursor cells were reduced or not in vitiligo lesions. We performed an immunostaining for Nestin and p75NGFR as dermal melanocyte precursor cells and MITF/Fzd4 as follicular melanocyte precursor cells and compared the positive cells number between lesions and non-lesions (n = 11). Although MITF<sup>+</sup>/Fzd4<sup>+</sup> cells in the hair follicle were significantly decreased in number in the lesions, Nestin<sup>+</sup> and p75NGFR<sup>+</sup> cells were not. This result indicates that dermal precursor cells could be retained in the vitiligo lesions but be disturbed to differentiate into matured melanocytes.展开更多
文摘<div style="text-align:justify;"> Neurotrophic factors, as well as their receptors are key players in the formation and development of the central nervous system. Like the sculptor’s incisor, they form the neural networks and circuits of the future organism. The neurotrophic growth factor receptor p75ngfr interacts with sortilin, serves as a receptor for proform of neurotrophic factors and exhibits a proapoptotic effect in developing neurons—dorsal root ganglia neurons and brainstem norepinephrine neurons. p75ngfr is highly expressed in Locus Coeruleus norepinephrine neurons. Therefore, an important task for developing further methods of CNS gene therapy is the development of tools and molecular methods for suppressing p75ngfr expression in norepinephrine neurons. For this purpose, we’ve developed improved dCas9 vectors with Suntag system to suppress gene expression and enhance methylation of CpG islands. We used 10 times repetitive GCN peptide that were fused to dCas9. Single chain antibody against GCN peptide was fused to KRAB repressor or Dnmt3a catalytic domain. Expression specificity was achieved by using a promoter consisting of 8 repeated phox2a/2b binding sites. In this work, we’ve tested a set of guide RNAs targeting p75ngfr cpg island in the promoter. Usage of Suntag system led us to the conclusion that topological orientation and length of the final complex could influence on p75ngfr antisense transcript expression, and that sequence was established in the rat P3 brainstem. </div>
文摘Although perifollicular repigmentation in the vitiligo lesions is owing to activation of follicular melanocyte stem cells and/or precursor cells followed by supplying matured melanocytes, the underlying mechanism of diffuse repigmentation on the whole vitiligo surface remains still unknown. In addition to the presence of remaining melanocytes, it is conceivable that dermal melanocyte precursor cells contribute to induce diffuse repigmentation after treatment. Therefore, we investigated here whether dermal and follicular melanocyte precursor cells were reduced or not in vitiligo lesions. We performed an immunostaining for Nestin and p75NGFR as dermal melanocyte precursor cells and MITF/Fzd4 as follicular melanocyte precursor cells and compared the positive cells number between lesions and non-lesions (n = 11). Although MITF<sup>+</sup>/Fzd4<sup>+</sup> cells in the hair follicle were significantly decreased in number in the lesions, Nestin<sup>+</sup> and p75NGFR<sup>+</sup> cells were not. This result indicates that dermal precursor cells could be retained in the vitiligo lesions but be disturbed to differentiate into matured melanocytes.