期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Acid and Alkali Buffer Capacity of Typical Fluvor-Aquic Soil in Huang-Huai-Hai Plain 被引量:11
1
作者 HUANG Ping ZHANG Jia-bao +1 位作者 ZHU An-ning ZHANG Cong-zhi 《Agricultural Sciences in China》 CSCD 2009年第11期1378-1383,共6页
Soil acid and alkali buffer capacity, as a major indicator for evaluating its vulnerability and resistibility to acidification and alkalization, is an important factor affecting the sustainable agriculture, through kn... Soil acid and alkali buffer capacity, as a major indicator for evaluating its vulnerability and resistibility to acidification and alkalization, is an important factor affecting the sustainable agriculture, through knowledge on which soil acidification process can be predicted and modified. In this study, titration curve method was adopted to investigate the pH buffer capacity (pHBC) of fluvor-aquic soil, and separate titration curves were established by adding incremental amounts of either standardized hydrochloric acid (HC1) (0.12 mol L^-1) or sodium hydroxide (NaOH) (0.10 mol L^-1) to soil suspended in deionized water (soil:solution = 1:5). Soil pH was measured after 7 d resuspension and isothermal equilibrium (T = 25℃). Linear regressions were fitted to the linear portion of each titration curve and the slopes of these lines were derived as the soil pHBC. The results showed that significant correlations between the amounts of adding acid or alkali and each pH change were presented, and titration curve method was feasible for measurement of pHBC on typical fluvor-aquic soil in Huang-Huai-Hai Plain, and the coefficients of determination were higher than the similar researches on acid soil (R^2 = 0.96). The slope-derived pHBC of acid and alkali were 158.71 and 25.02 mmol kg^-1, respectively. According to the classification of soil buffer systems, the soil tested belongs to the calcium carbonate buffer system, carbonates contribute the most to pHBC, and the contribution of soil organic matter relatively less than it. 展开更多
关键词 fluvor-aquic soil Huang-Huai-Hai Plain ph buffer capacity phBC)
下载PDF
Calcium-based polymers for suppression of soil acidification by improving acid-buffering capacity and inhibiting nitrification
2
作者 Fei Kang Yunshan Meng +5 位作者 Yanning Ge Yun Zhang Haixiang Gao Xueqin Ren Jie Wang Shuwen Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第5期138-149,共12页
Soil acidification is a major threat to agricultural sustainability in tropical and subtropical regions.Biodegradable and environmentally friendly materials,such as calcium lignosulfonate(CaLS),calcium poly(aspartic a... Soil acidification is a major threat to agricultural sustainability in tropical and subtropical regions.Biodegradable and environmentally friendly materials,such as calcium lignosulfonate(CaLS),calcium poly(aspartic acid)(PASP-Ca),and calcium polyγ-glutamic acid(γ-PGA-Ca),are known to effectively ameliorate soil acidity.However,their effectiveness in inhibiting soil acidification has not been studied.This study aimed to evaluate the effect of CaLS,PASP-Ca,andγ-PGA-Ca on the resistance of soil toward acidification as directly and indirectly(i.e.,via nitrification)caused by the application of HNO_(3)and urea,respectively.For comparison,Ca(OH)_(2)and lignin were used as the inorganic and organic controls,respectively.Among the materials,γ-PGA-Ca drove the substantial improvements in the pH buffering capacity(pHBC)of the soil and exhibited the greatest potential in inhibiting HNO_(3)-induced soil acidification via protonation of carboxyl,complexing with Al~(3+),and cation exchange processes.Under acidification induced by urea,CaLS was the optimal one in inhibiting acidification and increasing exchangeable acidity during incubation.Furthermore,the sharp reduction in the population sizes of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA)confirmed the inhibition of nitrification via CaLS application.Therefore,compared to improving soil pHBC,CaLS may play a more important role in suppressing indirect acidification.Overall,γ-PGA-Ca was superior to PASP-Ca and CaLS in enhancing the soil pHBC and the its resistance to acidification induced by HNO_(3) addition,whereas CaLS was the best at suppressing urea-driven soil acidification by inhibiting nitrification.In conclusion,these results provide a reference for inhibiting soil re-acidification in intensive agricultural systems. 展开更多
关键词 Calcium-based polymer Soil acidification ph buffering capacity Nitrification inhibition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部