By taking advantage of the separation characteristics of nonlinear gain and dynamic sector inside a Hammerstein model, a novel pole placement self tuning control scheme for nonlinear Hammerstein system was put forward...By taking advantage of the separation characteristics of nonlinear gain and dynamic sector inside a Hammerstein model, a novel pole placement self tuning control scheme for nonlinear Hammerstein system was put forward based on the linear system pole placement self tuning control algorithm. And the nonlinear Hammerstein system pole placement self tuning control(NL-PP-STC) algorithm was presented in detail. The identi fication ability of its parameter estimation algorithm of NL-PP-STC was analyzed, which was always identi fiable in closed loop. Two particular problems including the selection of poles and the on-line estimation of model parameters, which may be met in applications of NL-PP-STC to real process control, were discussed. The control simulation of a strong nonlinear p H neutralization process was carried out and good control performance was achieved.展开更多
Glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG), the major functional ingredient in licorice, has widespread applications in food, pharmacy and cosmetics industry. The production of GAMG through Penicillium purpu...Glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG), the major functional ingredient in licorice, has widespread applications in food, pharmacy and cosmetics industry. The production of GAMG through Penicillium purpurogenum Li-3 cultivation was for the first time performed through both batch and fed-batch processes in bioreactors. In batch process, under optimal conditions (pH 5.0, temperature 32℃, agitation speed 100 r. rain 1), 3.55 g. L^-1 GAMG was obtained in a 2.5 L fermentor. To further enhance GAMG production, a fine fed-batch process was developed by using pH and DO as feedback parameters. Starting from 48 h, 100 m190 g-L 1 substrate Glycyrrhizin (GL) was fed each time when pH increased to above 5.0 and DO was increased to above 80%. This strategy can significantly enhance GAMG production: the achieved GL conversion was 95.34% with GAMG yield of 95.15%, and GAMG concentration was 16.62 g. L^-1 which was 5 times higher than that of batch. Then, a two-step separation strat- egy was established to separate GAMG from fermentation broth by crude extraction of 15 ml column packed with D10I resin followed by fine purification with preparative C18 chromatography. The obtained GAMG purity was 95.79%. This study provides a new insight into the industrial bioprocess of high-level GAMG production.展开更多
To improve antagonistic metabolites production of Bacillus subtilis strain BS501a, physical parameters of fermentation and metal inorganic salts in medium, namely initial pH value, culture temperature, fermentation ti...To improve antagonistic metabolites production of Bacillus subtilis strain BS501a, physical parameters of fermentation and metal inorganic salts in medium, namely initial pH value, culture temperature, fermentation time, concentrations of CaC12, FeSO4, ZnSO4, MnSO4 and MgSO4, were optimized using one-factor-at-a-time and orthogonal tests. The results show that the optimal physical parameters of fermentation are an initial pH of 7.0, a culture temperature of 30 ~C, and a fermentation time of 48 h. The optimal concentrations of metal inorganic salts in basal medium are 10.2 mmol/L CaCl2, 0.4 mmol/L FeSO4, 3.5 mmol/L ZnSO4, 0.6 mmol/L MnSO4 and 2.0 mmol/L MgSO4. Among the metal inorganic salts, MgSO4 and MnSO4 play important roles in the improvement of the antagonistic metabolites production of B. subtilis strain BS501a; especially, MgSO4 contributes a highly significant effect. The average diameter of inhibition zone of the BS501a filtered fermentation supernatant (FFS) cultured in the optimal fermentation conditions against Magnaporthe grisea DWBJ329 reaches 71.4 mm, and there is 2.4-fold increase in antifungal activity as compared with 21.2 mm under the pre-optimized conditions.展开更多
文摘By taking advantage of the separation characteristics of nonlinear gain and dynamic sector inside a Hammerstein model, a novel pole placement self tuning control scheme for nonlinear Hammerstein system was put forward based on the linear system pole placement self tuning control algorithm. And the nonlinear Hammerstein system pole placement self tuning control(NL-PP-STC) algorithm was presented in detail. The identi fication ability of its parameter estimation algorithm of NL-PP-STC was analyzed, which was always identi fiable in closed loop. Two particular problems including the selection of poles and the on-line estimation of model parameters, which may be met in applications of NL-PP-STC to real process control, were discussed. The control simulation of a strong nonlinear p H neutralization process was carried out and good control performance was achieved.
基金Supported by the National Natural Science Foundation of China(21176028 and21506011)the National Science Fund for Distinguished Young Scholars of China(21425624)Doctoral Fund of Ministry of Education of China(20121101110050)
文摘Glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG), the major functional ingredient in licorice, has widespread applications in food, pharmacy and cosmetics industry. The production of GAMG through Penicillium purpurogenum Li-3 cultivation was for the first time performed through both batch and fed-batch processes in bioreactors. In batch process, under optimal conditions (pH 5.0, temperature 32℃, agitation speed 100 r. rain 1), 3.55 g. L^-1 GAMG was obtained in a 2.5 L fermentor. To further enhance GAMG production, a fine fed-batch process was developed by using pH and DO as feedback parameters. Starting from 48 h, 100 m190 g-L 1 substrate Glycyrrhizin (GL) was fed each time when pH increased to above 5.0 and DO was increased to above 80%. This strategy can significantly enhance GAMG production: the achieved GL conversion was 95.34% with GAMG yield of 95.15%, and GAMG concentration was 16.62 g. L^-1 which was 5 times higher than that of batch. Then, a two-step separation strat- egy was established to separate GAMG from fermentation broth by crude extraction of 15 ml column packed with D10I resin followed by fine purification with preparative C18 chromatography. The obtained GAMG purity was 95.79%. This study provides a new insight into the industrial bioprocess of high-level GAMG production.
基金Project(2010A210003) supported by Henan Province Natural Sciences Research PlanProject(0910SGYS34370-2) supported by Zhengzhou City Science and Technology Research PlanProject supported by the Youth Backbone Teacher of Universities in Henan Province Grants Plan
文摘To improve antagonistic metabolites production of Bacillus subtilis strain BS501a, physical parameters of fermentation and metal inorganic salts in medium, namely initial pH value, culture temperature, fermentation time, concentrations of CaC12, FeSO4, ZnSO4, MnSO4 and MgSO4, were optimized using one-factor-at-a-time and orthogonal tests. The results show that the optimal physical parameters of fermentation are an initial pH of 7.0, a culture temperature of 30 ~C, and a fermentation time of 48 h. The optimal concentrations of metal inorganic salts in basal medium are 10.2 mmol/L CaCl2, 0.4 mmol/L FeSO4, 3.5 mmol/L ZnSO4, 0.6 mmol/L MnSO4 and 2.0 mmol/L MgSO4. Among the metal inorganic salts, MgSO4 and MnSO4 play important roles in the improvement of the antagonistic metabolites production of B. subtilis strain BS501a; especially, MgSO4 contributes a highly significant effect. The average diameter of inhibition zone of the BS501a filtered fermentation supernatant (FFS) cultured in the optimal fermentation conditions against Magnaporthe grisea DWBJ329 reaches 71.4 mm, and there is 2.4-fold increase in antifungal activity as compared with 21.2 mm under the pre-optimized conditions.