Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area.To imp...Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area.To improve the wind-power absorption capacity and operating economy of the system,the structure of the system is improved by adding a heat storage device and an electric boiler.First,aiming at the minimum operating cost of the system,the optimal scheduling model of the cogeneration system,including a heat storage device and electric boiler,is constructed.Second,according to the characteristics of the problem,a cultural gene algorithm program is compiled to simulate the calculation example.Finally,through the system improvement,the comparison between the conditions before and after and the simulation solutions of similar algorithms prove the effectiveness of the proposed scheme.The simulation results show that adding the heat storage device and electric boiler to the scheduling optimization process not only improves the wind power consumption capacity of the cogeneration system but also reduces the operating cost of the system by significantly reducing the coal consumption of the unit and improving the economy of the system operation.The cultural gene algorithm framework has both the global evolution process of the population and the local search for the characteristics of the problem,which has a better optimization effect on the solution.展开更多
In recent years, the increasing penetration level of renewable generation and combined heat and power(CHP) technology in power systems is leading to significant changes in energy production and consumption patterns. A...In recent years, the increasing penetration level of renewable generation and combined heat and power(CHP) technology in power systems is leading to significant changes in energy production and consumption patterns. As a result, the integrated planning and optimal operation of a multi-carrier energy(MCE) system have aroused widespread concern for reasonable utilization of multiple energy resources and efficient accommodation of renewable energy sources. In this context, an integrated demand response(IDR) scheme is designed to coordinate the operation of power to gas(P2 G) devices, heat pumps,diversified storage devices and flexible loads within an extended modeling framework of energy hubs. Subsequently, the optimal dispatch of interconnected electricity,natural gas and heat systems is implemented considering the interactions among multiple energy carriers by utilizing the bi-level optimization method. Finally, the proposed method is demonstrated with a 4-bus multi-energy systemand a larger test case comprised of a revised IEEE 118-bus power system and a 20-bus Belgian natural gas system.展开更多
This paper built a combined heat and power(CHP) dispatch model for wind-CHP system with solid heat storage device(SHS) aiming at minimizing system coal consumption, and set system demand-supply balance and units'...This paper built a combined heat and power(CHP) dispatch model for wind-CHP system with solid heat storage device(SHS) aiming at minimizing system coal consumption, and set system demand-supply balance and units' operation conditions as the operation constraints. Furthermore, robust stochastic optimization theory was used to describe wind power output uncertainty. The simulation result showed that SHS increased CHP peak-valley shifting capability and reduced abandoned wind rate from 12% to 6%, and reduced 5% coal consumption, compared with the original system operation by flexible charging electric power and heating. The payback period of employing SHS in wind-CHP system is far shorter than SHS expected service life.展开更多
基金supported by the National Natural Science Foundation of China(61773269)China Scholarship for Overseas Studying(CSC No.202008210181),Department of Education of Liaoning Province of China(LJKZ1110)+1 种基金the Natural Science Foundation of Liaoning Province of China(2019-KF-03-08)the Program for Shenyang High Level Innovative Talents(RC190042).
文摘Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area.To improve the wind-power absorption capacity and operating economy of the system,the structure of the system is improved by adding a heat storage device and an electric boiler.First,aiming at the minimum operating cost of the system,the optimal scheduling model of the cogeneration system,including a heat storage device and electric boiler,is constructed.Second,according to the characteristics of the problem,a cultural gene algorithm program is compiled to simulate the calculation example.Finally,through the system improvement,the comparison between the conditions before and after and the simulation solutions of similar algorithms prove the effectiveness of the proposed scheme.The simulation results show that adding the heat storage device and electric boiler to the scheduling optimization process not only improves the wind power consumption capacity of the cogeneration system but also reduces the operating cost of the system by significantly reducing the coal consumption of the unit and improving the economy of the system operation.The cultural gene algorithm framework has both the global evolution process of the population and the local search for the characteristics of the problem,which has a better optimization effect on the solution.
文摘In recent years, the increasing penetration level of renewable generation and combined heat and power(CHP) technology in power systems is leading to significant changes in energy production and consumption patterns. As a result, the integrated planning and optimal operation of a multi-carrier energy(MCE) system have aroused widespread concern for reasonable utilization of multiple energy resources and efficient accommodation of renewable energy sources. In this context, an integrated demand response(IDR) scheme is designed to coordinate the operation of power to gas(P2 G) devices, heat pumps,diversified storage devices and flexible loads within an extended modeling framework of energy hubs. Subsequently, the optimal dispatch of interconnected electricity,natural gas and heat systems is implemented considering the interactions among multiple energy carriers by utilizing the bi-level optimization method. Finally, the proposed method is demonstrated with a 4-bus multi-energy systemand a larger test case comprised of a revised IEEE 118-bus power system and a 20-bus Belgian natural gas system.
基金Supported by the Fundamental Research Funds for the National Science Foundation of China(71573084)
文摘This paper built a combined heat and power(CHP) dispatch model for wind-CHP system with solid heat storage device(SHS) aiming at minimizing system coal consumption, and set system demand-supply balance and units' operation conditions as the operation constraints. Furthermore, robust stochastic optimization theory was used to describe wind power output uncertainty. The simulation result showed that SHS increased CHP peak-valley shifting capability and reduced abandoned wind rate from 12% to 6%, and reduced 5% coal consumption, compared with the original system operation by flexible charging electric power and heating. The payback period of employing SHS in wind-CHP system is far shorter than SHS expected service life.