The packet size of bainitic steel can be refined by a specialrelaxation-precipitation-control phase transformation (RFC) technology. When processed by RPCprocess, the low carbon bainitic steel composes of two kinds of...The packet size of bainitic steel can be refined by a specialrelaxation-precipitation-control phase transformation (RFC) technology. When processed by RPCprocess, the low carbon bainitic steel composes of two kinds of main intermediate transformationphases. One is ultra-fine lath-like bainitic ferrite and the lath is less than 1μm in width andabout 6 μm in length; the alignment of laths forms a refined packet, and the size of packets isabout 5-7 μm in length and about 3-4μm in width. The other is acicular structure. The morphologyand distribution of these acicular structures are influenced by relaxation process, the thin andshort acicular structures cut the prior austenite grain and refine the bainitic packet size. For theoptimum relaxation time, the packet size can be refined to the finest. The mechanical propertiesare influenced by relaxation time and the 800 MPa grade low carbon bainitic steel with excellenttoughness can be obtained by RPC process.展开更多
Ethernet network, standardized by IEEE 802.3, is vastly installed in Local Area Network (LAN) for cheaper cost and reliability. With the emergence of cost effective and enhanced user experience needs, the Quality of S...Ethernet network, standardized by IEEE 802.3, is vastly installed in Local Area Network (LAN) for cheaper cost and reliability. With the emergence of cost effective and enhanced user experience needs, the Quality of Service (QoS) of the underlying Ethernet network has become a major issue. A network must provide predictable, reliable and guaranteed services. The required QoS on the network is achieved through managing the end-to-end delay, throughput, jitter, transmission rate and many other network performance parameters. The paper investigates QoS parameters based on packet size to analyze the network performance. Segmentation in packet size larger than 1500 bytes, Maximum Transmission Unit (MTU) of Ethernet, is used to divide the large data into small packets. A simulation process under Riverbed modeler 17.5 initiates several scenarios of the Ethernet network to depict the QoS metrics in the Ethernet topology. For analyzing the result from the simulation process, varying sized packets are considered. Hence, the network performance results in distinct throughput, end-to-end delay, packet loss ratio, bit error rate etc. for varying packet sizes.展开更多
Parameter optimization of nodes communication is the foundation of underwater sensor networks.The packet size is an important indicator of the impact of communication performance.As a result,the optimal packet size se...Parameter optimization of nodes communication is the foundation of underwater sensor networks.The packet size is an important indicator of the impact of communication performance.As a result,the optimal packet size selection is a critical issue in improving the communication performance.This paper aims to make a model reflecting the communication characteristics as the optimization target,because underwater sensor networks have the characteristics of high time delay,high energy consumption and high bit error rate.Finally,simulation experiments and theory have demonstrated the effectiveness and timeliness of simultaneous perturbation stochastic approximation(SPSA) algorithm.展开更多
Packet size is restricted due to the error-prone wireless channel which drops the network energy utilization. Furthermore, the frequent packet retransmissions also lead to energy waste. In order to improve the energy ...Packet size is restricted due to the error-prone wireless channel which drops the network energy utilization. Furthermore, the frequent packet retransmissions also lead to energy waste. In order to improve the energy efficiency of wireless networks and save the energy of wireless devices, EEFA (Energy Efficiency Frame Aggregation), a frame aggregation based energy-efficient scheduling algorithm for IEEE 802.11n wireless network, is proposed. EEFA changes the size of aggregated frame dynamically according to the frame error rate, so as to ensure the data transmission and retransmissions completed during the TXOP and reduce energy consumption of channel contention. NS2 simulation results show that EEFA algorithm achieves better performance than the original frame-aggregation algorithm.展开更多
基金This work was financially supported by National Key Basic Research and Development Program of China (No.G1998061507) and Niobium Steel Development Project of CITIC-CBMM (No.2002RMJS-KY001)
文摘The packet size of bainitic steel can be refined by a specialrelaxation-precipitation-control phase transformation (RFC) technology. When processed by RPCprocess, the low carbon bainitic steel composes of two kinds of main intermediate transformationphases. One is ultra-fine lath-like bainitic ferrite and the lath is less than 1μm in width andabout 6 μm in length; the alignment of laths forms a refined packet, and the size of packets isabout 5-7 μm in length and about 3-4μm in width. The other is acicular structure. The morphologyand distribution of these acicular structures are influenced by relaxation process, the thin andshort acicular structures cut the prior austenite grain and refine the bainitic packet size. For theoptimum relaxation time, the packet size can be refined to the finest. The mechanical propertiesare influenced by relaxation time and the 800 MPa grade low carbon bainitic steel with excellenttoughness can be obtained by RPC process.
文摘Ethernet network, standardized by IEEE 802.3, is vastly installed in Local Area Network (LAN) for cheaper cost and reliability. With the emergence of cost effective and enhanced user experience needs, the Quality of Service (QoS) of the underlying Ethernet network has become a major issue. A network must provide predictable, reliable and guaranteed services. The required QoS on the network is achieved through managing the end-to-end delay, throughput, jitter, transmission rate and many other network performance parameters. The paper investigates QoS parameters based on packet size to analyze the network performance. Segmentation in packet size larger than 1500 bytes, Maximum Transmission Unit (MTU) of Ethernet, is used to divide the large data into small packets. A simulation process under Riverbed modeler 17.5 initiates several scenarios of the Ethernet network to depict the QoS metrics in the Ethernet topology. For analyzing the result from the simulation process, varying sized packets are considered. Hence, the network performance results in distinct throughput, end-to-end delay, packet loss ratio, bit error rate etc. for varying packet sizes.
文摘Parameter optimization of nodes communication is the foundation of underwater sensor networks.The packet size is an important indicator of the impact of communication performance.As a result,the optimal packet size selection is a critical issue in improving the communication performance.This paper aims to make a model reflecting the communication characteristics as the optimization target,because underwater sensor networks have the characteristics of high time delay,high energy consumption and high bit error rate.Finally,simulation experiments and theory have demonstrated the effectiveness and timeliness of simultaneous perturbation stochastic approximation(SPSA) algorithm.
基金国家重点基础研究发展规划(973) (the National Grand Fundamental Research 973 Program of China under Grant No.2003CB314804)国家教育部重点科技项目(the Key Technologies Project of the Ministry of Education of China No.105084)+1 种基金江苏省网络与信息安全重点实验室(No.BM2003201)江苏省博士后科研资助计划项目
基金the National Natural Science Foundation of China under Grant No.61363067,Guangxi Nature Science Foundation,Guangxi Ministry of Education Foundation
文摘Packet size is restricted due to the error-prone wireless channel which drops the network energy utilization. Furthermore, the frequent packet retransmissions also lead to energy waste. In order to improve the energy efficiency of wireless networks and save the energy of wireless devices, EEFA (Energy Efficiency Frame Aggregation), a frame aggregation based energy-efficient scheduling algorithm for IEEE 802.11n wireless network, is proposed. EEFA changes the size of aggregated frame dynamically according to the frame error rate, so as to ensure the data transmission and retransmissions completed during the TXOP and reduce energy consumption of channel contention. NS2 simulation results show that EEFA algorithm achieves better performance than the original frame-aggregation algorithm.
基金Supported by the Presidential Foundation of the Graduate University of the Chinese Academy of Sciences under Grant No.yzjj200503(中国科学院研究生院院长基金)the Scientific Research Startup Foundation of the Graduate University of the Chinese Academy of Sciences under Grant Nos.055101AKYQD200502(中国科学院研究生院科研启动基金)