期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Effects of cracks and some key factors on emissions of nitrous oxide in paddy fields 被引量:5
1
作者 HUANGShu-hui LUJun TIANGuang-ming 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第1期37-42,共6页
Paddy field is a primary agricultural landscape in the south of China and is often regarded as one of main sources emitting nitrous oxide to atmosphere. The nitrous oxide emissions under a variety of paddy field pract... Paddy field is a primary agricultural landscape in the south of China and is often regarded as one of main sources emitting nitrous oxide to atmosphere. The nitrous oxide emissions under a variety of paddy field practices, such as fertilization, flooding/draining management were investigated to study on agricultural activities on paddy field affect the dynamic process of the emission. Under no addition of fertilizers the average emission flux of nitrous oxide was 8 55 μg/(m 2·h) during the rice( Oryza Sativa L.) growth season. The results indicated that most of nitrous oxide emissions occurred during the crack forming and expansion period when paddy field was being drained. The diurnal emissions peak of nitrous oxide appeared at 20∶30 at night in cracked rice fields. The statistical analysis suggested that the correlation of nitrous oxide emissions flux( Y ) with soil water content( X 1), soil temperature( X 2), and E h( X 3), could be described in a regression equation: Y =-1498 95+2895 48 X 1+50 63 X 2-96 99 X 1· X 2+0 006 X 2· X 3 There were the different power equations to simulate the correlations between the everyday dynamic N 2O emissions and the mean surface area of cracks, mean volume and depth of cracks respectively during paddy soil drying by soil columns incubation experiments. Taken all together, the current study presented a dynamic analysis of nitrous oxide emission of paddy field under various conditions, therefore provided a basis for the management to balance between environmental effect and paddy field activities. 展开更多
关键词 nitrous oxide cracks RICE paddy fields
下载PDF
Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments 被引量:3
2
作者 LUO Chong LIU Huan-jun +4 位作者 FU Qiang GUAN Hai-xiang YE Qiang ZHANG Xin-le KONG Fan-chang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第7期1885-1896,共12页
Rice growth requires a large amount of water,and planting rice will increase the contradiction between supply and demand of water resources.Paddy field fllowing is important for the sustainable development of an agric... Rice growth requires a large amount of water,and planting rice will increase the contradiction between supply and demand of water resources.Paddy field fllowing is important for the sustainable development of an agricultural region,but it remains a great challenge to accurately and quickly monitor the extent and area of fallowed paddy fields.Paddy fields have unique physical features associated with paddy rice during the flooding and transplanting phases.By comparing the differences in phenology before and after paddy field fllowing,we proposed a phenology-based fallowed paddy field mapping algorithm.We used the Google Earth Engine(GEE)cloud computing platform and Landsat 8 images to extract the fllowed paddy field area on Sanjiang Plain of China in 2018.The results indicated that the Landsat8,GEE,and phenology-based fllowed paddy field mapping algorithm can effectively support the mapping of fallowed paddy fields on Sanjiang Plain of China.Based on remote sensing monitoring,the total fallowed paddy field area of Sanjiang Plain is 91543 ha.The resultant fallowed paddy field map is of high accuracy,with a producer(user)accuracy of 83%(81%),based on validation using ground-truth samples.The Landsat-based map also exhibits high consistency with the agricultural statistical data.We estimated that paddy field fallowing reduced irigation water by 384-521 million cubic meters on Sanjiang Plain in 2018.The research results can support subsidization grants for fallowed paddy fields,the evaluation of fallowed paddy field effects and improvement in subsequent fallowed paddy field policy in the future. 展开更多
关键词 fllowed paddy fields Landsat 8 Sanjiang Plain Google Earth Engine water security
下载PDF
Response of CH_4 emission of paddy fields to land management practices at a microcosmic cultivation scale in China 被引量:10
3
作者 SHAOJiang-an HUANGXue-xia +3 位作者 GAOMing WEIChao-fu XIEDe-ti CAIZu-cong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第4期691-698,共8页
The terrestrial ecosystem may be either a source or a sink of CH_4 in rice paddies, depending, to a great extent, on the change of ecosystem types and land use patterns. CH_4 emission fluxes from paddy fields under 4 ... The terrestrial ecosystem may be either a source or a sink of CH_4 in rice paddies, depending, to a great extent, on the change of ecosystem types and land use patterns. CH_4 emission fluxes from paddy fields under 4 cultivation patterns (conventional plain culture of rice(T1), no-tillage and ridge culture of rice(T2), no-tillage and ridge culture of rice and wheat (T3), and rice-wheat rotation(T4)) were measured with the closed chamber technique in 1996 and 1998 in Chongqing, China. The results showed that differences existed in CH_4 emission from paddy fields under these land management practices. In 1996 and 1998, CH_4 emission was 71 48% and 78 82%(T2), 65 93% and 57 18%(T3), and 61 53% and 34 22%(T4) of that in T1 during the rice growing season. During the non-rice growing season, CH_4 emission from rice fields was 76 23% in T2 and 38 69% in T1 The accumulated annual CH_4 emission in T2, T3 and T4 in 1996 decreased by 33 53%, 63 30% and 65 73%, respectively, as compared with that in T1 In 1998, the accumulated annual CH_4 emission in T1, T2, T3 and T4 was 116 96 g/m^2, 68 44 g/m^2, 19 70 g/m^2 and 11 80 g/m^2, respectively. Changes in soil physical and chemical properties, in thermal and moisture conditions in the soil and in rice plant growth induced by different land use patterns were the dominant causes for the difference in CH_4 emission observed. The relative contribution of various influencing factors to CH_4 emission from paddy fields differed significantly under different land use patterns. However, the general trend was that chlorophyll content in rice leaves, air temperature and temperature at the 5 cm soil layer play a major role in CH_4 emission from paddy fields and the effects of illumination, relative humidity and water layer depth in the paddy field and CH_4 concentration in the crop canopy were relatively non-significant. Such conservative land use patterns as no-tillage and ridge culture of rice with or without rotation with wheat are thought to be beneficial to reducing CH_4 emission from paddy fields and are, therefore, recommended as a significant solution to the problems of global(climatic) change. 展开更多
关键词 land use pattern microcosmic cultivation scale fluxes of CH_4 emission paddy field
下载PDF
Effects of nitrogen application rate and hill density on rice yield and nitrogen utilization in sodic saline–alkaline paddy fields 被引量:8
4
作者 GUO Xiao-hong LAN Yu-chen +5 位作者 XU Ling-qi YIN Da-wei LI Hong-yu QIAN Yong-de ZHENG Gui-ping LU Yan-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期540-553,共14页
Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic s... Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic saline–alkaline paddy fields and protect the environment.We investigated the interactive effects of N application rate and hill density on rice yield and N accumulation,translocation and utilization in two field experiments during 2018 and 2019 in sodic saline–alkaline paddy fields.Five N application rates (0 (control),90,120,150,and 180 kg N ha^(-1) (N0–N4),respectively) and three hill densities(achieved by altering the distance between hills,in rows spaced 30 cm apart:16.5 cm (D1),13.3 cm (D2) and 10 cm (D3))were utilized in a split-plot design with three replicates.Nitrogen application rate and hill density significantly affected grain yield.The mathematical model of quadratic saturated D-optimal design showed that with an N application rate in the range of 0–180 kg N ha^(-1),the highest yield was obtained at 142.61 kg N ha^(-1) which matched with a planting density of 33.3×10^(4) ha^(-1).Higher grain yield was mainly attributed to the increase in panicles m^(–2).Nitrogen application rate and hill density significantly affected N accumulation in the aboveground parts of rice plants and showed a highly significant positive correlation with grain yield at maturity.From full heading to maturity,the average N loss rate of the aboveground parts of rice plants in N4 was 70.21% higher than that of N3.This is one of the reasons why the yield of N4 treatment is lower than that of the N3 treatment.Nitrogen accumulation rates in the aboveground parts under treatment N3 (150 kg N ha^(-1)) were 81.68 and 106.07% higher in 2018 and 2019,respectively,than those in the control.The N translocation and N translocation contribution rates increased with the increase in the N application rate and hill density,whereas N productivity of dry matter and grain first increased and then decreased with the increase in N application rate and hill density.Agronomic N-use efficiency decreased with an increase in N application rate,whereas hill density did not significantly affect it.Nitrogen productivity of dry matter and grain,and agronomic N-use efficiency,were negatively correlated with grain yield.Thus,rice yield in sodic saline–alkaline paddy fields can be improved by combined changes in the N application rate and hill density to promote aboveground N accumulation.Our study provides novel evidence regarding optimal N application rates and hill densities for sodic saline–alkaline rice paddies. 展开更多
关键词 rice yield saline–alkaline soil nitrogen accumulation paddy field Songnen Plain
下载PDF
Multiple cropping and soil fertility in sustainable production of paddy fields 被引量:1
5
作者 LI shiye Institute of Soil and Fertilizer,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,China 《Chinese Rice Research Newsletter》 1991年第3期5-6,共2页
Multiple cropping has been popularized on morethan two thirds of the total area of paddy fields inSouth China.It demands more nutrients due tohigher cropping index.Therefore,how to keepmoderately higher yields of mult... Multiple cropping has been popularized on morethan two thirds of the total area of paddy fields inSouth China.It demands more nutrients due tohigher cropping index.Therefore,how to keepmoderately higher yields of multiple crops and to 展开更多
关键词 SOIL Multiple cropping and soil fertility in sustainable production of paddy fields
全文增补中
Present Situation and Prospect of Comprehensive Planting and Culture in Paddy Fields in Northeast China
6
作者 Xiaoguang ZU Ming CHEN +3 位作者 Tiegang LIU Lihe FAN Zhanwei WANG Xiujie ZU 《Asian Agricultural Research》 2022年第2期54-56,65,共4页
The rice planting area in Northeast China has reached 5.6 million ha,but the utilization rate of comprehensive culture area in paddy field is only 2%.It is mainly dominated by fish culture in paddy field and crab cult... The rice planting area in Northeast China has reached 5.6 million ha,but the utilization rate of comprehensive culture area in paddy field is only 2%.It is mainly dominated by fish culture in paddy field and crab culture in paddy field,which has broad development prospects.In recent years,the comprehensive planting and culture area of paddy fields in Liaoning Province has developed rapidly with a total of 80000 ha.In accordance with the local environmental conditions,Heilongjiang and Jilin regions have introduced a new model and technology of comprehensive planting and culture in paddy fields,and developed a comprehensive planting and breeding model of paddy fields with characteristics.At present,the comprehensive planting and culture in paddy fields in Northeast China is still in the stage of rapid development,which needs to be further developed towards specialization,scale,industrialization,high quality and brand. 展开更多
关键词 Northeast region Comprehensive planting and culture in paddy field Model
下载PDF
NUMERICAL SIMULATION OF METHANE EMISSIONS FROM RICE PADDY FIELDS IN THE YANGTZE DELTA OF CHINA 被引量:6
7
作者 刘建栋 周秀骥 张宇 《Acta meteorologica Sinica》 SCIE 2001年第1期1-11,共11页
A numerical simulation model is presented in this paper,which comprises the processes of crop growth,soil organic carbon decomposition,and methane emissions in agroecosystems. Simulation results show that the model ca... A numerical simulation model is presented in this paper,which comprises the processes of crop growth,soil organic carbon decomposition,and methane emissions in agroecosystems. Simulation results show that the model can simulate the main process of methane emissions well, and the correlation coefficient between the simulated values and observed data is 0.79 with 239 samples,which passed a significance test of 0.01.The average error of methane emission simulation in whole growth period is about 15%.Numerical analysis of the model indicates that the average temperature during rice growth period has much impacts on methane emissions,and the basic trend of interannual methane emissions is similar to that of average temperature.The amount of methane emissions reduces about 34.93%,when the fertilizer is used instead of manure in single rice paddy. 展开更多
关键词 numerical simulation methane emissions rice paddy fields the Yangtze Delta of China
原文传递
Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields? 被引量:3
8
作者 Shujuan Zhang Li Wang +4 位作者 Fang Ma Xue Zhang Zhe Li Shiyang Li Xiaofeng Jiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第7期211-218,共8页
Our study sought to assess how much phosphorus(P) runoff from paddy fields could be cut down by fertilizer management and inoculation with arbuscular mycorrhizal fungi. A field experiment was conducted in Lalin Rive... Our study sought to assess how much phosphorus(P) runoff from paddy fields could be cut down by fertilizer management and inoculation with arbuscular mycorrhizal fungi. A field experiment was conducted in Lalin River basin, in the northeast China: six nitrogen-phosphorus-potassium fertilizer levels were provided(0, 20%, 40%, 60%, 80%, and 100% of the recommended fertilizer supply), with or without inoculation with Glomus mosseae. The volume and concentrations of particle P(PP) and dissolved P(DP) were measured for each runoff during the rice growing season. It was found that the seasonal P runoff, including DP and PP, under the local fertilization was 3.7 kg/ha, with PP, rather than DP, being the main form of P in runoff water. Additionally, the seasonal P runoff dropped only by 8.9% when fertilization decreased by 20%; rice yields decreased with declining fertilization. We also found that inoculation increased rice yields and decreased P runoff at each fertilizer level and these effects were lower under higher fertilization. Conclusively, while rice yields were guaranteed arbuscular mycorrhizal inoculation and fertilizer management would play a key role in reducing P runoff from paddy fields. 展开更多
关键词 Arbuscular mycorrhizal fungi FERTILIZER paddy fields Phosphorus runoff RICE
原文传递
Reducing nitrogen runoff from paddy fields with arbuscular mycorrhizal fungi under different fertilizer regimes 被引量:8
9
作者 Shujuan Zhang Li Wang +2 位作者 Fang Ma Xue Zhang Dafang Fu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第8期92-100,共9页
Nitrogen(N) runoff from paddy fields serves as one of the main sources of water pollution. Our aim was to reduce N runoff from paddy fields by fertilizer management and inoculation with arbuscular mycorrhizal fungi... Nitrogen(N) runoff from paddy fields serves as one of the main sources of water pollution. Our aim was to reduce N runoff from paddy fields by fertilizer management and inoculation with arbuscular mycorrhizal fungi(AMF). In northeast China, Shuangcheng city in Heilongjiang province, a field experiment was conducted, using rice provided with 0%, 20%, 40%, 60%, 80%,and 100% of the local norm of fertilization(including N, phosphorus and potassium), with or without inoculation with Glomus mosseae. The volume, concentrations of total N(TN),dissolved N(DN) and particulate N(PN) of runoff water were measured. We found that the local norm of fertilization led to 18.9 kg/ha of N runoff during rice growing season, with DN accounting for 60%–70%. We also found that reduction in fertilization by 20% cut down TN runoff by 8.2% while AMF inoculation decreased N runoff at each fertilizer level and this effect was inhibited by high fertilization. The combination of inoculation with AMF and 80% of the local norm of fertilization was observed to reduce N runoff by 27.2%. Conclusively, we suggested that the contribution of AMF inoculation combined with decreasing fertilization should get more attention to slow down water eutrophication by reducing N runoff from paddy fields. 展开更多
关键词 Nitrogen loss Runoff paddy fields Arbuscular mycorrhizal fungi Fertilization Dissolved nitrogen Particulate nitrogen
原文传递
Evaluating system of rice intensification using a modified transplanter:A smart farming solution toward sustainability of paddy fields in Malaysia 被引量:1
10
作者 Redmond R.Shamshiri Bala Ibrahim +2 位作者 Siva K.Balasundram Sima Taheri Cornelia Weltzien 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第2期54-67,共14页
This paper presents the study reports on evaluating a new transplanting operation by taking into accounts the interactions between soil,plant,and machine in line with the System of Rice Intensification(SRI)practices.T... This paper presents the study reports on evaluating a new transplanting operation by taking into accounts the interactions between soil,plant,and machine in line with the System of Rice Intensification(SRI)practices.The objective was to modify planting claw(kuku-kambing)of a paddy transplanter in compliance with SRI guidelines to determine the best planting spacing(S),seed rate(G)and planting pattern that results in a maximum number of seedling,tillers per hill,and yield.Two separate experiments were carried out in two different paddy fields,one to determine the best planting spacing(S=4 levels:s_(1)=0.16 m×0.3 m,s_(2)=0.18 m×0.3 m,s_(3)=0.21 m×0.3 m,and s_(4)=0.24 m×0.3 m)for a specific planting pattern(row mat or scattered planting pattern),and the other to determine the best combination of spacing with seed rate treatments(G=2 levels:g1=75 g/tray,and g2=240 g/tray).Main SRI management practices such as soil characteristics of the sites,planting depth,missing hill,hill population,the number of seedling per hill,and yield components were evaluated.Results of two-way analysis of variance with three replications showed that spacing,planting pattern and seed rate affected the number of one-seedling in all experiment.It was also observed that the increase in spacing resulted in more tillers and more panicle per plant,however hill population and sterility ratio increased with the decrease in spacing.While the maximum number of panicles were resulted from scattered planting at s_(4)=0.24 m×0.3 m spacing with the seed rate of g1=75 g/tray,the maximum number of one seedling were observed at s_(4)=0.16 m×0.3 m.The highest and lowest yields were obtained from 75 g seeds per tray scattered and 70 g seeds per tray scattered treatment respectively.For all treatments,the result clearly indicates an increase in yield with an increase in spacing. 展开更多
关键词 system of rice intensification sustainable cultivation smart farming modified transplanter paddy fields MALAYSIA
原文传递
Measurement of Ammonia Emission Following Surface Application of Urea Fertilizer from Irrigated Paddy Rice Fields 被引量:4
11
作者 Md.ToufiqIqbal TIANGuang-ming +1 位作者 LIANGXin-qiang FatimaRukshana 《Agricultural Sciences in China》 CAS CSCD 2005年第4期288-293,共6页
Ammonia emission is one of the most important pathways of nitrogen loss from agricultural cultivated field. In this paper, we report the measurement of ammonia emission from paddy rice field obtained by surface applic... Ammonia emission is one of the most important pathways of nitrogen loss from agricultural cultivated field. In this paper, we report the measurement of ammonia emission from paddy rice field obtained by surface application of urea fertilizer with water management. The main objective of the present study were to assess the amount of NH3 emission and the loss of nitrogen from paddy field as affected by various N doses, i.e., 0 (control), 90 (N1), 180 (N2), 270 (N3) and 360 (N4) kg ha-1, following field surface application of urea fertilizer with water management. Ammonia emissions were measured by continuous airflow enclosure method from plots fertilized with the application of surface urea. Increase in urea-N dosage increased NH3 emission that was measured from paddy rice field. Ammonia emission started immediately and was almost complete within 12 days after top dressing of urea application to the soils. Ammonia emissions were nearly constant in all treatments from 12 days after fertilizer application. Highest ammonia emission rate was 28 g /day and total amount of ammonia emission was 56.21 kg ha-1 for 360 kg N ha-1 dose. No remarkable observation was found about temperature for ammonia emission. Due to proper water management practices less emission was observed throughout the experiment period. The results also show that N loss through NH3 emission accounted for 11 to 16% during the rice- growing season. These magnitudes of loss of N appear to be most important for environmental point of view. 展开更多
关键词 Ammonia emission Surface application UREA paddy field Nitrogen loss
下载PDF
Integrated rice management simultaneously improves rice yield and nitrogen use efficiency in various paddy fields 被引量:1
12
作者 Yujiao DONG Fanwen ZENG +6 位作者 Jiang YUAN Guangbin ZHANG Yuanxue CHEN Xuejun LIU Padilla HILARIO Tusheng REN Shihua LU 《Pedosphere》 SCIE CAS CSCD 2020年第6期863-873,共11页
The hilly area of Southwest China is a typical rice production area which is limited by seasonal droughts and low temperature in the early rice growth period.A field experiment was conducted on three typical paddy fie... The hilly area of Southwest China is a typical rice production area which is limited by seasonal droughts and low temperature in the early rice growth period.A field experiment was conducted on three typical paddy fields(low-lying paddy field,medium-elevation paddy field,and upland paddy field)in this region.Nitrogen(N)treatment(180 kg N ha-1 year-1)was compared to a control treatment(0 kg N ha-1 year-1)to evaluate the effects of integrated rice management(IRM)on rice growth,grain yield,and N utilization.Integrated rice management integrated raised beds containing plastic mulch,furrow irrigation,and triangular transplanting.In comparison to traditional rice management(TRM),IRM promoted rice tiller development,with 7–13 more tillers per cluster at the maximum tillering stage and 1–6 more tillers per cluster at the end of tillering stage.Integrated rice management significantly increased the rice aboveground biomass by 34.4%–109.0%in different growth periods and the aboveground N uptake by 25.3%–159.0%.Number of productive tillers significantly increased by 33.0%,resulting in a 33.0%increase in grain yield and 8.0%improvement of N use efficiency(NUE).Grain yields were significantly increased in all three paddy fields assessed,with IRM being the most important factor for grain yield and productive tiller development.Effects of paddy field type and N level on N uptake by aboveground plants were reflected in the rice reproductive growth period,with the effects of IRM more striking due to the dry climate conditions.In conclusion,IRM simultaneously improved rice yield and NUE,presenting a valuable rice management technique in the paddy fields assessed. 展开更多
关键词 grain yield hilly area nitrogen uptake paddy field type plastic mulch traditional rice management
原文传递
Analysis of the land suitability for paddy fields in Tanzania using a GIS-based analytical hierarchy process
13
作者 Ahmad Al-Hanbali Kenichi Shibuta +1 位作者 Bayan Alsaaideh Yasuhiro Tawara 《Geo-Spatial Information Science》 SCIE EI CSCD 2022年第2期212-228,共17页
The importance of irrigation development is considered a key factor for food security and poverty reduction because it improves crop productivity,and ensures stable expansion of agricultural production.However,irrigat... The importance of irrigation development is considered a key factor for food security and poverty reduction because it improves crop productivity,and ensures stable expansion of agricultural production.However,irrigation development requires understanding of the avail-able resources including the suitability of the land for agriculture.In this study,the land suitability for paddy fields was evaluated within the United Republic of Tanzania mainland by integrating the geographic information system(GIS)and analytical hierarchy process(AHP).In this study,11 criteria based on various sources(soil type,soil drainage,soil organic carbon,soil pH,soil depth,elevation,slope,land use,topographic wetness index,temperature,and precipitation)were used.These criteria were used within the GIS-based AHP to identify the most suitable land for sustainable paddy field cultivation considering the preservation of the natural environment of forests and protected areas by examining two scenarios:rainfed condition and irrigation priority.The former ten criteria were assumed to be constant in both scenarios and were assigned the same scores,while the latter criterion(precipitation)was assigned different scores for varying amounts to plan new irrigation projects.Unsuitable land represents 72.8%of the study area,reducing the potential agriculture land(PAL)appropriate for cultivation to 27.2%.In the rainfed condition scenario,the very high and high suitability classes represent 17.6%of the total land of the study area and 64.7%of the PAL.In the irrigation priority scenario,the same classes represent 21.4%of the total land of the study area and 78.6%of the PAL.Finally,the distribution of the land suitability for both scenarios was analyzed within eight administrative irrigation zones to determine the irrigation zone with the greatest potential for paddy field cultivation. 展开更多
关键词 paddy field AGRICULTURE land suitability Geographic Information System(GIS) Analytical Hierarchy Process(AHP) sustainable development Tanzania
原文传递
Effects of elevated CO_(2) concentration on CH_(4) and N_(2)O emissions from paddy fields:A meta-analysis
14
作者 Haiyang YU Tianyu WANG +4 位作者 Qiong HUANG Kaifu SONG Guangbin ZHANG Jing MA Hua XU 《Science China Earth Sciences》 SCIE EI CSCD 2022年第1期96-106,共11页
The inevitable rise of atmospheric CO_(2) concentration plays an important role in regulating the carbon(C)and nitrogen(N)cycling in the rice-cropping system.Elucidating the effects of elevated CO_(2) concentration(EC... The inevitable rise of atmospheric CO_(2) concentration plays an important role in regulating the carbon(C)and nitrogen(N)cycling in the rice-cropping system.Elucidating the effects of elevated CO_(2) concentration(ECO_(2))on CH_(4) and N_(2)O emissions from paddy fields is essential for evaluating agricultural production in response to global climate change.In this study,we conducted a global meta-analysis to assess the overall effect of ECO_(2) on CH_(4) and N_(2)O emissions from paddy fields,aiming at providing a guideline for sustainable C and N management in paddy fields under future climate conditions.The results showed that,overall,ECO_(2) significantly increased CH_(4) emissions from rice fields by 23%(P<0.05),but reduced N_(2)O emissions by 22%(P<0.05).With a long duration(>10 yr)of ECO_(2) ,ECO_(2) significantly reduced CH_(4) and N_(2)O emissions from paddy fields by 27%and 53%,respectively(P<0.05).Along with the increasing levels of ECO_(2) ,the stimulating effect of ECO_(2) on CH_(4) emissions showed a trend of"weakening firstly and then strengthening",while its effect on N_(2)O emissions changed from stimulation to inhibition.Agronomy managements(e.g.,N application rates,straw incorporations,water regimes,and rice cultivars)affected the effects of ECO_(2) on CH_(4) and N_(2)O emissions from paddy fields.With no or half amount of straw incorporation,ECO_(2) increased CH_(4) emissions by 27% or 49%(P<0.05)from paddy fields,respectively,while non-significant effects on CH_(4) emissions from paddy fields were observed under full straw incorporation.With the increasing amount of straw incorporation,the reductions in N_(2)O emissions from paddy fields were enhanced by ECO_(2).Compared with a continuous flooding regime,intermittent irrigation weakened the promoted effect on CH_(4) emissions but stimulated the inhibited effect on N_(2)O emissions from paddy fields under ECO_(2).Therefore,under the future condition of ECO_(2),it is recommended to adopt the appropriate agricultural management measures,such as combining straw incorporation and intermittent irrigation,and optimizing N application and using rice cultivars of high-yield with lower emissions.In addition,it is necessary to conduct comprehensive studies at multiscale,with multi-factor,and by multi-method to effectively reduce the uncertainty of quantifying the response of CH_(4) and N_(2)O emissions from paddy fields to future ECO_(2) . 展开更多
关键词 Elevated CO_(2) paddy field CH_(4) N_(2)O Agronomy managements META-ANALYSIS
原文传递
Effects of straw and biochar addition on soil nitrogen,carbon,and super rice yield in cold waterlogged paddy soils of North China 被引量:23
15
作者 CUI Yue-feng MENG Jun +3 位作者 WANG Qing-xiang ZHANG Wei-ming CHENG Xiao-yi CHEN Wen-fu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1064-1074,共11页
The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of s... The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of straw and biochar addition on soil nitrogen form, carbon storage, and super rice yield in cold waterlogged paddy soils. We performed field trials with four treatments including conventional fertilization system (CK), straw amendment 6 t ha^-1 (S), biochar amendment 2 t ha^-1 (C1), and biochar amendment 40 t ha^-1 (C2). The super japonica rice variety, Shennong 265, was selected as the test Crop. The results showed that the straw and biochar amendments improved total nitrogen and organic carbon content of the soil, reduced N2O emissions, and had little influence on nitrogen retention, nitrogen density, and CO2 emissions. The S and C1 increased NH4^+-N content, and C2 increased NO3^--N content. Both S and C1 had little influence on soil organic carbon density (SOCD) and C/N ratio. However, C2 greatly increased SOCD and C/N ratio. C1 and C2 significantly improved the soil carbon sequestration (SCS) by 62.9 and 214.0% (P〈0.05), respectively, while S had no influence on SCS. C1 and C2 maintained the stability of super rice yield, and significantly reduced CH4 emissions, global warming potential (GWP), and greenhouse gas intensity (GHGI), whereas S had the opposite and negative effects. In summary, the biochar amendments in cold waterlogged paddy soils of North China increased soil nitrogen and carbon content, improved soil carbon sequestration, and reduced GHG emission without affecting the yield of super rice. 展开更多
关键词 BIOCHAR STRAW paddy field nitrogen form carbon sequestration greenhouse gas emission rice yield
下载PDF
Discrepancy in Response of Rice Yield and Soil Fertility to Long-Term Chemical Fertilization and Organic Amendments in Paddy Soils Cultivated from Infertile Upland in Subtropical China 被引量:12
16
作者 LIU Ming LI Zhong-pei +2 位作者 ZHANG Tao-lin JIANG Chun-yu CHE Yu-ping 《Agricultural Sciences in China》 CAS CSCD 2011年第2期259-266,共8页
From 1990,over 17 years field experiment was carried out in paddy field cultivated from infertile upland to evaluate the response of rice productivity,soil organic carbon(SOC),and total N to long-term NPK fertilizat... From 1990,over 17 years field experiment was carried out in paddy field cultivated from infertile upland to evaluate the response of rice productivity,soil organic carbon(SOC),and total N to long-term NPK fertilization or NPK combined with organic amendments.The field trials included NPK(N,P,K fertilizer),NPKRS(NPK combined with rice straw),NPK2RS(NPK combined with double amount of rice straw),NPKPM(NPK combined with pig manure) and NPKGM(NPK combined with green manure) and the cropping system was rice-rice(Oryza sativa L.) rotation.Annual rice yield,straw biomass,and harvesting index increased steadily with cultivation time in all treatments.Average annual rice yield from 1991 to 2006 was ranged from 7 795 to 8 572 kg ha-1 among treatments.Rice yields in treatments with organic amendments were usually higher than that in treatment with NPK.Contents of SOC and total N also increased gradually in the cultivation years and reached the level of 7.82 to 9.45 and 0.85 to 1.03 g kg-1,respectively,in 2006.Soil fertilities in treatments with chemical fertilization combined with organic amendments were relatively appropriate than those in treatment with NPK.There was obvious discrepancy between cumulative characters of rice yield and soil organic fertility in newly formed paddy field.Compared with relatively high rate of crop productivity improvement,cumulative rates of SOC and total N were much lower in our study.SOC and total N contents were still less than half of those in local highly productive paddy soils after 17 years cultivation in subtropical China.Present work helps to better understand the development of infertile paddy soils and to estimate the potential of yield improvement in this region. 展开更多
关键词 paddy field rice yield SOC total N long-term field experiment
下载PDF
Predicting herbicides concentrations in paddy water and runoff to the river basin 被引量:6
17
作者 PARVEEN Sultana KOHGUCHI Testuyuki +1 位作者 BISWAS Moloy NAKAGOSHI Nobukazu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第4期631-636,共6页
This study was conducted to investigate the dissipation pattern and runoff of herbicides to the river basin from the paddy fields. Pesticide paddy field model(PADDY) was applied to predict herbicide concentration in p... This study was conducted to investigate the dissipation pattern and runoff of herbicides to the river basin from the paddy fields. Pesticide paddy field model(PADDY) was applied to predict herbicide concentration in paddy fields. A field study was conducted in a paddy farm of Higashi Hiroshima City, Hiroshima Prefecture, Japan in the year of 2003 paddy season. The herbicides were mefenacet, thiobencarb, and bensulfuron methyl. The sample water was analyzed by using gas chromatography and HPLC after solid phase extraction. Predicted dissipation rate of thiobencarb in paddy water was higher(DT_ 50 = 4 36) than that measured, with a lower k value(-0 069). Two weeks after application no thiobencarb was detected in the drainage channel and down stream. In the down stream, thiobencarb was detected until 3 d after application, with a range of 0 02% to 0 08% of applied herbicide. The predicted dissipation rate(k) and half-life(DT_ 50 ) of mefenacet was not significantly different from that of measured. In the drainage channel, upstream and downstream mefenacet was found during the whole study period. In downstream, the maximum concentration of mefenacet was present 0 61% of applied in the paddy field on 3DAH. The dissipation rate(k) of BSM varied from -0 0860 to -0 1059 to with half-life(DT_ 50 ) 3 5 and 2 84 d. In upstream water, no BSM was detected except trace amounts(0 01 μg/L) at 3 d after application. However, in the drainage channel 8%, 6% and 1 58% of applied BSM was present at 0, 1 and 3 d after application respectively. In the down stream, the highest concentration was 1 06%, shortly after application. 展开更多
关键词 paddy field pesticide paddy field model(paddy) HERBICIDE dissipation RUNOFF
下载PDF
Nitrogen and phosphorus changes and optimal drainage time of flooded paddy field based on environmental factors 被引量:4
18
作者 Meng-hua XIAO Shuang-en YU +1 位作者 Yan-yan WANG Rong HUANG 《Water Science and Engineering》 EI CAS CSCD 2013年第2期164-177,共14页
While many controlled irrigation and drainage techniques have been adopted in China, the environmental effects of these techniques require further investigation. This study was conducted to examine the changes of nitr... While many controlled irrigation and drainage techniques have been adopted in China, the environmental effects of these techniques require further investigation. This study was conducted to examine the changes of nitrogen and phosphorus of a flooded paddy water system after fertilizer application and at each growth stage so as to obtain the optimal drainage time at each growth stage. Four treatments with different water level management methods at each growth stage were conducted under the condition of ten-day continuous flooding. Results show that the ammonia nitrogen ( NH4-N ) concentration reached the peak value once the fertilizer was applied, and then decreased to a relatively low level seven to ten days later, and that the nitrate nitrogen (NO^-N) concentration gradually rose to its peak value, which appeared later in subsurface water than in surface water. Continuous flooding could effectively reduce the concentrations of NH^-N , NO3-N, and total phosphorus (TP) in surface water. However, the paddy water disturbance, in the process of soil surface adsorption and nitrification, caused NH]-N to be released and increased the concentrations of NH4-N and NO^-N in surface water. A multi-objective controlled drainage model based on environmental factors was established in order to obtain the optimal drainage time at each growth stage and better guide the drainage practices of farmers. The optimal times for surface drainage are the fourth, sixth, fifth, and sixth days after flooding at the tillering, jointing-booting, heading-flowering, and milking stages, respectively. 展开更多
关键词 ammonia nitrogen nitrate nitrogen PHOSPHORUS optimal drainage time flooded paddy field
下载PDF
Nitrogen and Phosphorus Loss Law and Emission Reduction Effects Under Water and Fertilizer Management Integrated Mode in Dike Paddy Field 被引量:2
19
作者 GUO Longsheng ZHOU Guangtao GUO Zhongyuan 《Journal of Northeast Agricultural University(English Edition)》 CAS 2009年第4期31-37,共7页
To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. D... To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. During investigation, it had given prominence for the water and fertilizer coupling effects of precise irrigation and site specific nutrient management, the characteristics of integration on controlled irrigation, controlled drainage and wetland ecosystem non-point source pollution control. Then the water and fertilizer integrated management mode of paddy field was put forward in Taihu basin where the water production efficiency increased to 1.64 kg. m-3, water saved 37.8%, fertilizer use efficiency raised 15,4%, yield raised 10%, and N, P load decreased 26%-72%. The modern agricultural and farmland ecosystems that control and cut down the farm non-point source pollution came into being, which can be a reference by Taihu basin to control its agricultural non-point source pollution and eutrophicated water body. 展开更多
关键词 paddy field the integrated mode of water and fertilizer management non-point source pollution nitrogen and phosphorus loss
下载PDF
Effects of Paddy Field Rotation on Diseases,Pests and Weeds of Rice 被引量:1
20
作者 Xu Ning Huang Guoqin 《Plant Diseases and Pests》 CAS 2013年第4期20-24,共5页
[ Objective] The paper was to explore ecological effect of paddy field rotation on reducing disease, pests and weeds of rice. [ Method] With long-term continuous cropping rice as control, according to field location e... [ Objective] The paper was to explore ecological effect of paddy field rotation on reducing disease, pests and weeds of rice. [ Method] With long-term continuous cropping rice as control, according to field location experiments for consecutive 14 years, the effects of paddy field rotation on diseases, pests and weeds of rice were studied in details. [ Result] Paddy field rotation in some extent could reduce diseases, pests and weeds of rice. The diseased plant rate and disease in- dex of rice sheath blight in early rice under paddy field rotation treatment were averagely 10% and 0.4% lower than those in continuous cropping treatment, respec- tively. The diseased plant rate and disease index of rice sheath blight in late rice were 17.7% and 13.3% lower than those in treatments with continuous cropping mode, respectively. The diseased plant rate and disease index of rice false smut in both early rice and late rice under rotation treatments were lower than those in treatments with continuous cropping mode. White leaf rate caused by rice leaf roller and dry heart rate caused by striped rice borer under rotation treatments were significantly lower than those under continuous cropping treatment. The growth status of weeds under rotation treatments was weaker than that under continuous cropping treatment. [ Conclusion] The paper has important significance on alleviating diseases, pests and weeds of rice and improvement of ecological environment of farmland, and provides theoretical basis for sustainable development of agriculture. 展开更多
关键词 Long-term location test paddy field rotation Diseases pests and weeds
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部