Fenlong green ecological agriculture technology (Fenlong technology), a new smash ridging farming method developed by Guangxi Academy of Agdcultural Sciences, has been elected as the recommended cultivation techniqu...Fenlong green ecological agriculture technology (Fenlong technology), a new smash ridging farming method developed by Guangxi Academy of Agdcultural Sciences, has been elected as the recommended cultivation technique by the Ministry of Agriculture of China. It replaces the traditional plowshare with spiral drill, and its tilth depth is twice deeper than that by tractor tilthing. It also extends soil nutrient, moisture, oxygen and microorganism, the so-called "Four pools". Soil nutrient, oxygen, microorganism, light and rainfall use ratio is increased by 10%-100%, creating a platform for natural increase of more than 10% of crop yield. Its application to over 20 kinds of crops in 21 provinces has proved that the yield increases 10-30% with quality enhancing 5% and double water retaining capacity but no more input. When the application area of Fenlong could reach 67 million hm2, the amount of fertilizer can be reduced by 40-50 billion kg, saving 120-150 billion Yuan. In this paper, we put forward the strategy of "4+1" (arable, saline-alkali soil, grasslands, Sponge City + rivers) green development in China, and deepened the Fenlong cultivated tilled layer from 16.5 cm to 35 cm for 67 million hm2 arable land, ridged 13.3 million hm2 of saline-alkali soil for 35 cm, and also 35 cm for 67 million hm2 degraded steppe, which could have the following 3 effects: first, the 147 million hm2 of land with Fenlong cultivation could increase loosing soil to 315.491 billion m3, in* creasing by 159.26% for 120 million hm2 of arable land with the average tilled layer of 16.5 cm, which has loosing soil of only 198.1 billion m3, that is, the space of the land increases 1.6 times. Second, every hectare of plowland could store up to 450 m3/hm2 of natural rainfall, and the unused 60 m3 of saline-alkali soil and grasslands could store water of 102 billion m3, showing an increase of over 88.89% for the current plowland storage of 54 billion m3 at now, that is, double the natural rainfall storage capacity. Third, the two multiple increase of natural resources application can bring trillions of resource activation, environmental cleaning, food security, citizens, health, economic, ecological and social benefits, and makes the Chinese nation move forward in green development. Its application in "big scientific research" and "One Belt And One Road" will contribute Chinese strength to the world.展开更多
This paper focuses on participatory testing of decision making tools (DMTs) at village level to assist in development of land use plans (LUPs) for sustainable land management (SLM) in Kilimanjaro Region, Tanzania. Dat...This paper focuses on participatory testing of decision making tools (DMTs) at village level to assist in development of land use plans (LUPs) for sustainable land management (SLM) in Kilimanjaro Region, Tanzania. Data were collected using conditional surveys through key informant interviews with the project’s district stakeholders in each district, focused group discussions with selected villagers and participatory mapping of natural resources. Soil health, land degradation, carbon stock, and hydrological conditions were assessed in the seven pilot villages in all seven districts using DMTs as part of testing and validation. Results indicated soils of poor to medium health, and land degradation as portrayed by gullies and wind erosion in lowlands and better in uplands. Carbon and forest disturbance status could not be assessed using one-year data but hydrological analysis revealed that water resources were relatively good in uplands and poor in the lowlands. Challenges with regard to land use include increased gully erosion, decreased stream flow, reduced vegetation cover due to shifting from coffee with tree sheds to annual crops farming, cultivation near water sources, and overgrazing. Empowering the community with decision making tools at village level is essential to ensure that village land uses are planned in a participatory manner for sustainable land and natural resources management in Kilimanjaro and other regions in Tanzania.展开更多
Fanjing Mountain Nature Reserve is located at the junction of Jiangkou,Yinjiang and Songtao counties in the Tongren region of Guizhou Province.Because of the topography and humid climate of the central subtropical mon...Fanjing Mountain Nature Reserve is located at the junction of Jiangkou,Yinjiang and Songtao counties in the Tongren region of Guizhou Province.Because of the topography and humid climate of the central subtropical monsoonal mountains,the plant species in this area are rich and diverse.The vascular plant resources and diversity of Fanjing Mountain Nature Reserve in Guizhou Province were studied through field survey,literature review and specimen identification.The results show that there are 284 species of vascular plants in the region,belonging to 205 genera in 93 families,mainly angiosperms.Liliaceae,Asteraceae,Polygonaceae,Leguminosae,Ranunculaceae and Polygonum have the most species,followed by Sedum,Dioscorea,Actinidia Lindl and Thalictrum.In terms of life types,perennial herbs are the most dominant,accounting for 68.47%of the total number of species,and annual(or biennial)herbs,shrubs and vine types also present.There are 222 species identified as medicinal vascular plants,accounting for 78.2%of the total number of species.The medicinal parts are primarily found in the whole herb category,followed by the root and rhizome category.展开更多
Remote sensing and GIS applications are being widely used for various projects relating to natural resource management. Forests are very important national assets for economic, environmental protection, social and cul...Remote sensing and GIS applications are being widely used for various projects relating to natural resource management. Forests are very important national assets for economic, environmental protection, social and cultural values and should be conserved in order to realize all these benefits. Kenya’s forests are rapidly declining due to pressure from increased population, technological innovation, urbanization human development and other land uses. Mau forest is one of the major forests in Kenya that is a catchment area for many Great Rift Valley lakes within the country and faces a lot of destruction. Continued destruction of the Mau forest will cause catastrophic environmental damage, resulting in massive food crises and compromising the livelihoods of millions of Kenyans, and the possible collapse of the tourism industry. The purpose of this research was to investigate the relationship between the increasing rate of deforestation and the reduction of the volumes of water in the neighboring lakes between the years 1989 to 2010. Satellite images from Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper (ETM+) were used for the detection of changes in the Mau forest and the dynamics of the neighboring water bodies that included lakes: Naivasha, Baringo, Nakuru, Elementaita and Bogoria. The research showed that from a period of 1989 to 2010 Mau forest has been decreasing due to deforestation and the water bodies have irregular dynamics in that, from 1989 to 2000, there was rise in the volume of water, this is attributed to the El Nino rains experienced in the country during the year 1997 and 1998. But between 2000 and 2010 the volume decreased as the forest is also decreasing. It is recommended that the government creates awareness to sensitize the public on the importance of such forests as catchment areas in Kenya.展开更多
The first part of the article provides an overview of the theoretical evidence, the main provisions, and the implementation strategy of information support for bioresource and ecosystem research in the north-west Paci...The first part of the article provides an overview of the theoretical evidence, the main provisions, and the implementation strategy of information support for bioresource and ecosystem research in the north-west Pacific, which has been conducted over the past 20 years in the Russian Far East Research Institute TINRO-Center. In short, the concept consists of a combination of the following four assertions: 1) For the steady and sustainable development of the Russian Far East, the entire Russian Federation and the Asia-Pacific Region in general, environmental, food, economic, and other security is required, which cannot be achieved without the rational use of bioresources based on the ecosystem approach to the management of aquatic bioresources. 2) For the inventory, appraisal, monitoring, forecasting of the state of and management the natural water resources when applying this approach, statistically relevant quantitative information is required on the greatest possible number of constituents of marine biocenosis of the north-western Pacific for the longest possible period of time, which is only available at the TINRO-Center. 3) This valuable data should be organized into databases, based on which geo-information and other electronic information systems are prepared, and based on these map atlases and reference books on natural water resources, using automated workplaces created especially for this. 4) The resulting unique information support will be of great value not only for practical purposes, but also for science, both applied and fundamental. Next comes a summary of the many years of work on the practical implementation of this concept and the key achievements in this field obtained by the TINRO-Center by the end of 2015 are reviewed. At the end, some plans for the near future are outlined.展开更多
This paper prohes into the relationship among individual benefits, benefits of the country. common benefits of all humans in land use and land resource security. The following balanced land use model is proposed: the...This paper prohes into the relationship among individual benefits, benefits of the country. common benefits of all humans in land use and land resource security. The following balanced land use model is proposed: the harmonious and interactive relationship between man and nature, two main bodies of land ecological system, constitutes the mechanism of land resources security; The feedback relationship between man and nature is the basis for the land resources security and the core is the relationship among people established for the benefit equilibrium in land use. The conflicts in land use stem from the rarity of land resource and the solution to those conflicts in harmony helps land resource security.展开更多
Cr(Ⅵ)-bearing wastewater can be treated by natural pyrrhotite which is used for reductant to reduce Cr(Ⅵ) and precipitant to precipitate Cr(Ⅲ) simultaneously. The disposal products can be divided into three parts i...Cr(Ⅵ)-bearing wastewater can be treated by natural pyrrhotite which is used for reductant to reduce Cr(Ⅵ) and precipitant to precipitate Cr(Ⅲ) simultaneously. The disposal products can be divided into three parts in the beakers, namely supernatant in the upper part, the yellowish colloidal precipitates in the middle part and the pyrrhotite in the lower part. The content of total Cr=Cr(Ⅵ)+Cr(Ⅲ) in the supernatant liquid is 0.06 mg/L, which is lower than 1.5 mg/L of the discharge standard of China and near to 0.05 mg/L of the standard of potable water. This one-step disposal composing of both reduction and precipitation which is traditionally divided into two independent steps called reducing technology and precipitating technology respectively. The new method is of obvious economic advantage and favourable to decreasing surplus mud derived from adding Ca(OH)2 to precipitate Cr(Ⅲ) traditionally so as to avoid recontamination. In fact, sodium sulfite (Na2SO3) used in disposal of Cr(Ⅵ) was展开更多
Aims competition has been shown to modify the niche breadth of coex-isting species,but within-species interactions have received little attention.Establishing small juvenile individuals and established,larger,sexually...Aims competition has been shown to modify the niche breadth of coex-isting species,but within-species interactions have received little attention.Establishing small juvenile individuals and established,larger,sexually reproducing adult individuals represent two life-his-tory stages within species.We investigated the nitrogen and carbon resource use of adult and juvenile individuals and similarity of sym-biotic fungal community composition in these two plant life stages.We used the plant Solidago virgaurea growing in a simplified system in the low Arctic as model species.Methods Isotopic signatures(foliarδ15N and foliarδ13c)were analysed to characterize nitrogen acquisition and water-use efficiency of the plants.Symbiotic root fungal community composition was esti-mated by cloning and sequencing small subunit ribosomal RNA gene.Important Findings The isotopic signatures differed significantly between the life stages,indicating that the establishing juvenile cohort used relatively more amino acids or gained N through mycorrhizal symbiosis in com-parison to the established adult plants.Symbiotic fungal commu-nities did not differ between the two plant cohorts suggesting a possibility that the plants shared the same mycorrhizal network.We conclude that competition-mediated differences in plant resource use may create niche differentiation between the two life-history stages and enable them to coexist.展开更多
文摘Fenlong green ecological agriculture technology (Fenlong technology), a new smash ridging farming method developed by Guangxi Academy of Agdcultural Sciences, has been elected as the recommended cultivation technique by the Ministry of Agriculture of China. It replaces the traditional plowshare with spiral drill, and its tilth depth is twice deeper than that by tractor tilthing. It also extends soil nutrient, moisture, oxygen and microorganism, the so-called "Four pools". Soil nutrient, oxygen, microorganism, light and rainfall use ratio is increased by 10%-100%, creating a platform for natural increase of more than 10% of crop yield. Its application to over 20 kinds of crops in 21 provinces has proved that the yield increases 10-30% with quality enhancing 5% and double water retaining capacity but no more input. When the application area of Fenlong could reach 67 million hm2, the amount of fertilizer can be reduced by 40-50 billion kg, saving 120-150 billion Yuan. In this paper, we put forward the strategy of "4+1" (arable, saline-alkali soil, grasslands, Sponge City + rivers) green development in China, and deepened the Fenlong cultivated tilled layer from 16.5 cm to 35 cm for 67 million hm2 arable land, ridged 13.3 million hm2 of saline-alkali soil for 35 cm, and also 35 cm for 67 million hm2 degraded steppe, which could have the following 3 effects: first, the 147 million hm2 of land with Fenlong cultivation could increase loosing soil to 315.491 billion m3, in* creasing by 159.26% for 120 million hm2 of arable land with the average tilled layer of 16.5 cm, which has loosing soil of only 198.1 billion m3, that is, the space of the land increases 1.6 times. Second, every hectare of plowland could store up to 450 m3/hm2 of natural rainfall, and the unused 60 m3 of saline-alkali soil and grasslands could store water of 102 billion m3, showing an increase of over 88.89% for the current plowland storage of 54 billion m3 at now, that is, double the natural rainfall storage capacity. Third, the two multiple increase of natural resources application can bring trillions of resource activation, environmental cleaning, food security, citizens, health, economic, ecological and social benefits, and makes the Chinese nation move forward in green development. Its application in "big scientific research" and "One Belt And One Road" will contribute Chinese strength to the world.
文摘This paper focuses on participatory testing of decision making tools (DMTs) at village level to assist in development of land use plans (LUPs) for sustainable land management (SLM) in Kilimanjaro Region, Tanzania. Data were collected using conditional surveys through key informant interviews with the project’s district stakeholders in each district, focused group discussions with selected villagers and participatory mapping of natural resources. Soil health, land degradation, carbon stock, and hydrological conditions were assessed in the seven pilot villages in all seven districts using DMTs as part of testing and validation. Results indicated soils of poor to medium health, and land degradation as portrayed by gullies and wind erosion in lowlands and better in uplands. Carbon and forest disturbance status could not be assessed using one-year data but hydrological analysis revealed that water resources were relatively good in uplands and poor in the lowlands. Challenges with regard to land use include increased gully erosion, decreased stream flow, reduced vegetation cover due to shifting from coffee with tree sheds to annual crops farming, cultivation near water sources, and overgrazing. Empowering the community with decision making tools at village level is essential to ensure that village land uses are planned in a participatory manner for sustainable land and natural resources management in Kilimanjaro and other regions in Tanzania.
基金We would like to show our great appreciation to Shenyang Zhuoyuehefa Pharmaceutical Co.and Grand Life Science(Liaoning)Co.,LTD.for their financial support on this scientific expedition and Shenyang Pharmaceutical University for their great support and help to the 10^(th)Scientific Research Team on Chinese Medicine Resources.
文摘Fanjing Mountain Nature Reserve is located at the junction of Jiangkou,Yinjiang and Songtao counties in the Tongren region of Guizhou Province.Because of the topography and humid climate of the central subtropical monsoonal mountains,the plant species in this area are rich and diverse.The vascular plant resources and diversity of Fanjing Mountain Nature Reserve in Guizhou Province were studied through field survey,literature review and specimen identification.The results show that there are 284 species of vascular plants in the region,belonging to 205 genera in 93 families,mainly angiosperms.Liliaceae,Asteraceae,Polygonaceae,Leguminosae,Ranunculaceae and Polygonum have the most species,followed by Sedum,Dioscorea,Actinidia Lindl and Thalictrum.In terms of life types,perennial herbs are the most dominant,accounting for 68.47%of the total number of species,and annual(or biennial)herbs,shrubs and vine types also present.There are 222 species identified as medicinal vascular plants,accounting for 78.2%of the total number of species.The medicinal parts are primarily found in the whole herb category,followed by the root and rhizome category.
文摘Remote sensing and GIS applications are being widely used for various projects relating to natural resource management. Forests are very important national assets for economic, environmental protection, social and cultural values and should be conserved in order to realize all these benefits. Kenya’s forests are rapidly declining due to pressure from increased population, technological innovation, urbanization human development and other land uses. Mau forest is one of the major forests in Kenya that is a catchment area for many Great Rift Valley lakes within the country and faces a lot of destruction. Continued destruction of the Mau forest will cause catastrophic environmental damage, resulting in massive food crises and compromising the livelihoods of millions of Kenyans, and the possible collapse of the tourism industry. The purpose of this research was to investigate the relationship between the increasing rate of deforestation and the reduction of the volumes of water in the neighboring lakes between the years 1989 to 2010. Satellite images from Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper (ETM+) were used for the detection of changes in the Mau forest and the dynamics of the neighboring water bodies that included lakes: Naivasha, Baringo, Nakuru, Elementaita and Bogoria. The research showed that from a period of 1989 to 2010 Mau forest has been decreasing due to deforestation and the water bodies have irregular dynamics in that, from 1989 to 2000, there was rise in the volume of water, this is attributed to the El Nino rains experienced in the country during the year 1997 and 1998. But between 2000 and 2010 the volume decreased as the forest is also decreasing. It is recommended that the government creates awareness to sensitize the public on the importance of such forests as catchment areas in Kenya.
文摘The first part of the article provides an overview of the theoretical evidence, the main provisions, and the implementation strategy of information support for bioresource and ecosystem research in the north-west Pacific, which has been conducted over the past 20 years in the Russian Far East Research Institute TINRO-Center. In short, the concept consists of a combination of the following four assertions: 1) For the steady and sustainable development of the Russian Far East, the entire Russian Federation and the Asia-Pacific Region in general, environmental, food, economic, and other security is required, which cannot be achieved without the rational use of bioresources based on the ecosystem approach to the management of aquatic bioresources. 2) For the inventory, appraisal, monitoring, forecasting of the state of and management the natural water resources when applying this approach, statistically relevant quantitative information is required on the greatest possible number of constituents of marine biocenosis of the north-western Pacific for the longest possible period of time, which is only available at the TINRO-Center. 3) This valuable data should be organized into databases, based on which geo-information and other electronic information systems are prepared, and based on these map atlases and reference books on natural water resources, using automated workplaces created especially for this. 4) The resulting unique information support will be of great value not only for practical purposes, but also for science, both applied and fundamental. Next comes a summary of the many years of work on the practical implementation of this concept and the key achievements in this field obtained by the TINRO-Center by the end of 2015 are reviewed. At the end, some plans for the near future are outlined.
基金the Natural Science Foundation of Zhejiang Province(Grant No.Y606017).
文摘This paper prohes into the relationship among individual benefits, benefits of the country. common benefits of all humans in land use and land resource security. The following balanced land use model is proposed: the harmonious and interactive relationship between man and nature, two main bodies of land ecological system, constitutes the mechanism of land resources security; The feedback relationship between man and nature is the basis for the land resources security and the core is the relationship among people established for the benefit equilibrium in land use. The conflicts in land use stem from the rarity of land resource and the solution to those conflicts in harmony helps land resource security.
文摘Cr(Ⅵ)-bearing wastewater can be treated by natural pyrrhotite which is used for reductant to reduce Cr(Ⅵ) and precipitant to precipitate Cr(Ⅲ) simultaneously. The disposal products can be divided into three parts in the beakers, namely supernatant in the upper part, the yellowish colloidal precipitates in the middle part and the pyrrhotite in the lower part. The content of total Cr=Cr(Ⅵ)+Cr(Ⅲ) in the supernatant liquid is 0.06 mg/L, which is lower than 1.5 mg/L of the discharge standard of China and near to 0.05 mg/L of the standard of potable water. This one-step disposal composing of both reduction and precipitation which is traditionally divided into two independent steps called reducing technology and precipitating technology respectively. The new method is of obvious economic advantage and favourable to decreasing surplus mud derived from adding Ca(OH)2 to precipitate Cr(Ⅲ) traditionally so as to avoid recontamination. In fact, sodium sulfite (Na2SO3) used in disposal of Cr(Ⅵ) was
基金Ella and Georg Ehrnrooth FoundationThe Finnish Cultural FoundationAcademy of Finland(127657).
文摘Aims competition has been shown to modify the niche breadth of coex-isting species,but within-species interactions have received little attention.Establishing small juvenile individuals and established,larger,sexually reproducing adult individuals represent two life-his-tory stages within species.We investigated the nitrogen and carbon resource use of adult and juvenile individuals and similarity of sym-biotic fungal community composition in these two plant life stages.We used the plant Solidago virgaurea growing in a simplified system in the low Arctic as model species.Methods Isotopic signatures(foliarδ15N and foliarδ13c)were analysed to characterize nitrogen acquisition and water-use efficiency of the plants.Symbiotic root fungal community composition was esti-mated by cloning and sequencing small subunit ribosomal RNA gene.Important Findings The isotopic signatures differed significantly between the life stages,indicating that the establishing juvenile cohort used relatively more amino acids or gained N through mycorrhizal symbiosis in com-parison to the established adult plants.Symbiotic fungal commu-nities did not differ between the two plant cohorts suggesting a possibility that the plants shared the same mycorrhizal network.We conclude that competition-mediated differences in plant resource use may create niche differentiation between the two life-history stages and enable them to coexist.