期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Painting image browser applying an associate-rule-aware multidimensional data visualization technique 被引量:1
1
作者 Ayaka Kaneko Akiko Komatsu +1 位作者 Takayuki Itoh Florence Ying Wang 《Visual Computing for Industry,Biomedicine,and Art》 2020年第1期18-30,共13页
Exploration of artworks is enjoyable but often time consuming.For example,it is not always easy to discover the favorite types of unknown painting works.It is not also always easy to explore unpopular painting works w... Exploration of artworks is enjoyable but often time consuming.For example,it is not always easy to discover the favorite types of unknown painting works.It is not also always easy to explore unpopular painting works which looks similar to painting works created by famous artists.This paper presents a painting image browser which assists the explorative discovery of user-interested painting works.The presented browser applies a new multidimensional data visualization technique that highlights particular ranges of particular numeric values based on association rules to suggest cues to find favorite painting images.This study assumes a large number of painting images are provided where categorical information(e.g.,names of artists,created year)is assigned to the images.The presented system firstly calculates the feature values of the images as a preprocessing step.Then the browser visualizes the multidimensional feature values as a heatmap and highlights association rules discovered from the relationships between the feature values and categorical information.This mechanism enables users to explore favorite painting images or painting images that look similar to famous painting works.Our case study and user evaluation demonstrates the effectiveness of the presented image browser. 展开更多
关键词 painting image Multi-dimensional data visualization Association rule
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部