We examined salt tolerance responsive genes in Pak-choi under salt stress and analyze their potential function. The LRNA differential display was used to screen the transcript derived fragments (TDFs) related to sal...We examined salt tolerance responsive genes in Pak-choi under salt stress and analyze their potential function. The LRNA differential display was used to screen the transcript derived fragments (TDFs) related to salinity tolerance in tolerant and Loderately tolerant Pak-choi germplasm. Seventy-eight primer combinations generated 101 differential eDNA fragments, which ere divided into 10 expression types. Seven cDNA sequences (GenBank accession Nos. DQ006915-DQ006921) obtained and ,~quenced were highly homologous to some known expression genes or the genes related to the signaling pathways in plants under ifferent abiotic stress.展开更多
This article investigates the responses of Brassica campestris seedlings to an acute level of nitrogen dioxide (NO2) exposure in a plant growth chamber, and examines whether pretreating plants with hydrogen peroxide...This article investigates the responses of Brassica campestris seedlings to an acute level of nitrogen dioxide (NO2) exposure in a plant growth chamber, and examines whether pretreating plants with hydrogen peroxide (H2O2) will alleviate NO2-caused injury. Twenty-eight-day-old B. campestris plants sprayed with 10 mmol L^-1 H2O2 aqueous solution (corresponding to approximate 1.0 mg H2O2 per single plant) were exposed to different concentrations of NO2 (0.25, 0.5, 1.0, and 2.0 μL L^-1, respectively) for 24 h under controlled environment. To measure the plant biomass, the plants were fumigated with the same NO2 concentrations as mentioned above for 7 h per day (8.00-15.00) for 7 days. As a control, charcoal filtered air alone was applied. Data were collected on plant biomass, total chlorophyll, photosynthetic rate, stomatal conductance, nitrate and nitrate reductase (NR), antioxidative enzymes, ascorbate (ASA), and malondialdehyde (MDA), immediately after exposure. The results showed that exposure to a moderate dose of NO2 (e.g., 0.25 μL L^-1) had a favorable effect on plants, and the dry weight of the above-ground part increased, whereas the exposure to high NO2 concentrations (e.g., 0.5 μL L^-1 or higher) caused a reduction in the plant biomass and the total chlorophyll, when compared with the control. In addition, at 0.5 μL L^-1 or higher NO2 concentrations, prominent increases in the MDA level and superoxide dismutase (SOD) and NR activities were observed. Exposure to 1 μL L^-1 and higher NO2 resulted in necroses appearing on older leaves, and an increase in catalase (CAT) activity, decrease in ASA content, increased accumulation of NO3^-, and reduction in photosynthesis, when compared with the controls. No changes were detected in stomatal conductance under NO2 fumigation. The pretreatment with 10 mmol L^-1 H2O2 alleviated significantly NO2- caused biomass decrease and photosynthetic inhibition when compared with H2O2-untreated plants. Under NO2 fumigation, further induction in SOD and CAT activities occurred in H2O2 treated plants when compared with H2O2- untreated plants. The effect of NO2 on the ASA and MDA contents was also absent in H2O2-treated plants. However, the H2O2 treatment did not alter the nitrate content and NR activity in plants under NO2 fumigation. The H2O2 treatment caused a lower rate of stomatal conductance. Taken together, these data suggest that fumigation with an acute level of NO2 causes oxidative damage to B. campestris seedlings. The H2O2 pretreatment markedly protects plants against NO2 stress and this may be associated with inducible antioxidative level. NO2 fumigation contributes, at least in part, to the enhanced levels of nitrate in B. campestris leaves.展开更多
Three main parameters were selected to study their importance in transformation by budmicroinjection in non-head Chinese cabbage [Brassica campestris ssp. chinensis (L.) Makinovar. communis Tsen et Lee]. The results s...Three main parameters were selected to study their importance in transformation by budmicroinjection in non-head Chinese cabbage [Brassica campestris ssp. chinensis (L.) Makinovar. communis Tsen et Lee]. The results showed that the developmental stage of floral bud, theconcentrations of sucrose and surfactant Silwet L-77 were critical for the successfultransformation by this new method. The suitable bud size is 2-3 mm in length, the favorableconcentration of sucrose and surfactant Silwet L-77 are 8 and 0.02% respectively. When thesucrose concentration was greater than 10% or that of Silwet L-77 was above 0.1%, the treatedbuds became yellow and finally blighted. 4/6 T1 seedlings resistant to kanamycin were positiveby PCR analysis, and T2 progeny of all these positive T1 plants have one or more hybridizingbands by Southern blot. Under 5% sucrose, 0.02% Silwet L-77 and grade 2 bud (2-3 mm in itslength) parameters, the most favorable transformation efficiency is about 0.56%, and meanefficiency reaches 0.16% in all experiments indicating that bud microinjection is potentialtransformation way in non-head Chinese cabbage.展开更多
基金Project supported by the National "the Tenth Five-Year-Plan" Key Program (No. 2004BA525B08)China and the Key Laboratory of Vegetable Genetics and Physiology, Ministry of Agriculture, China
文摘We examined salt tolerance responsive genes in Pak-choi under salt stress and analyze their potential function. The LRNA differential display was used to screen the transcript derived fragments (TDFs) related to salinity tolerance in tolerant and Loderately tolerant Pak-choi germplasm. Seventy-eight primer combinations generated 101 differential eDNA fragments, which ere divided into 10 expression types. Seven cDNA sequences (GenBank accession Nos. DQ006915-DQ006921) obtained and ,~quenced were highly homologous to some known expression genes or the genes related to the signaling pathways in plants under ifferent abiotic stress.
基金the National Natural Science Foundation of China (30570445) Natural Science Foundation of Liaoning Province, China (20021022)+1 种基金 Tackle Key Problem of Science and Technology, Education Department of Liaoning Province, China (2004D005)and Director Foundation of ExperimentalCentre, Shenyang Normal University, China (SY200406).
文摘This article investigates the responses of Brassica campestris seedlings to an acute level of nitrogen dioxide (NO2) exposure in a plant growth chamber, and examines whether pretreating plants with hydrogen peroxide (H2O2) will alleviate NO2-caused injury. Twenty-eight-day-old B. campestris plants sprayed with 10 mmol L^-1 H2O2 aqueous solution (corresponding to approximate 1.0 mg H2O2 per single plant) were exposed to different concentrations of NO2 (0.25, 0.5, 1.0, and 2.0 μL L^-1, respectively) for 24 h under controlled environment. To measure the plant biomass, the plants were fumigated with the same NO2 concentrations as mentioned above for 7 h per day (8.00-15.00) for 7 days. As a control, charcoal filtered air alone was applied. Data were collected on plant biomass, total chlorophyll, photosynthetic rate, stomatal conductance, nitrate and nitrate reductase (NR), antioxidative enzymes, ascorbate (ASA), and malondialdehyde (MDA), immediately after exposure. The results showed that exposure to a moderate dose of NO2 (e.g., 0.25 μL L^-1) had a favorable effect on plants, and the dry weight of the above-ground part increased, whereas the exposure to high NO2 concentrations (e.g., 0.5 μL L^-1 or higher) caused a reduction in the plant biomass and the total chlorophyll, when compared with the control. In addition, at 0.5 μL L^-1 or higher NO2 concentrations, prominent increases in the MDA level and superoxide dismutase (SOD) and NR activities were observed. Exposure to 1 μL L^-1 and higher NO2 resulted in necroses appearing on older leaves, and an increase in catalase (CAT) activity, decrease in ASA content, increased accumulation of NO3^-, and reduction in photosynthesis, when compared with the controls. No changes were detected in stomatal conductance under NO2 fumigation. The pretreatment with 10 mmol L^-1 H2O2 alleviated significantly NO2- caused biomass decrease and photosynthetic inhibition when compared with H2O2-untreated plants. Under NO2 fumigation, further induction in SOD and CAT activities occurred in H2O2 treated plants when compared with H2O2- untreated plants. The effect of NO2 on the ASA and MDA contents was also absent in H2O2-treated plants. However, the H2O2 treatment did not alter the nitrate content and NR activity in plants under NO2 fumigation. The H2O2 treatment caused a lower rate of stomatal conductance. Taken together, these data suggest that fumigation with an acute level of NO2 causes oxidative damage to B. campestris seedlings. The H2O2 pretreatment markedly protects plants against NO2 stress and this may be associated with inducible antioxidative level. NO2 fumigation contributes, at least in part, to the enhanced levels of nitrate in B. campestris leaves.
文摘Three main parameters were selected to study their importance in transformation by budmicroinjection in non-head Chinese cabbage [Brassica campestris ssp. chinensis (L.) Makinovar. communis Tsen et Lee]. The results showed that the developmental stage of floral bud, theconcentrations of sucrose and surfactant Silwet L-77 were critical for the successfultransformation by this new method. The suitable bud size is 2-3 mm in length, the favorableconcentration of sucrose and surfactant Silwet L-77 are 8 and 0.02% respectively. When thesucrose concentration was greater than 10% or that of Silwet L-77 was above 0.1%, the treatedbuds became yellow and finally blighted. 4/6 T1 seedlings resistant to kanamycin were positiveby PCR analysis, and T2 progeny of all these positive T1 plants have one or more hybridizingbands by Southern blot. Under 5% sucrose, 0.02% Silwet L-77 and grade 2 bud (2-3 mm in itslength) parameters, the most favorable transformation efficiency is about 0.56%, and meanefficiency reaches 0.16% in all experiments indicating that bud microinjection is potentialtransformation way in non-head Chinese cabbage.