The term“Holocene temperature conundrum”refers to the inconsistencies between proxy-based reconstructions and transient model simulations,and it challenges our understanding of global temperature evolution during th...The term“Holocene temperature conundrum”refers to the inconsistencies between proxy-based reconstructions and transient model simulations,and it challenges our understanding of global temperature evolution during the Holocene.Climate reconstructions indicate a cooling trend following the Holocene Thermal Maximum,while model simulations indicate a consistent warming trend due to icesheet retreat and rising greenhouse gas concentrations.Various factors,such as seasonal biases and overlooked feedback processes,have been proposed as potential causes for this discrepancy.In this study,we examined the impact of vegetation-climate feedback on the temperature anomaly patterns in East Asia during the mid-Holocene(~6 ka).By utilizing the fully coupled Earth system model EC-Earth and performing simulations with and without coupled dynamic vegetation,our objective was to isolate the influence of vegetation changes on regional temperature patterns.Our findings reveal that vegetation-climate feedback contributed to warming across most of East Asia,resulting in spatially diverse temperature changes during the mid-Holocene and significantly improved model-data agreement.These results high-light the crucial role of vegetation-climate feedback in addressing the Holocene temperature conundrum and emphasize its importance for simulating accurate climate scenarios.展开更多
Glaciers in the Yarlung Zangbo Downstream Basin(YZDB) are sensitive to global climate change. The equilibrium-line altitude(ELA) is a key indicator of glacial development.Current models for simulating the meteorologic...Glaciers in the Yarlung Zangbo Downstream Basin(YZDB) are sensitive to global climate change. The equilibrium-line altitude(ELA) is a key indicator of glacial development.Current models for simulating the meteorological ELA underestimate the extent of glacial advance during the Last Glacial Maximum(LGM) in the YZDB and cannot explain the large-scale glacial extension compared with the Yarlung Zangbo Midstream Basin(YZMB). In this study, the distribution of ELA in the LGM is reconstructed using high-resolution 80-km ECHAM5 simulations and empirical relationships between temperature and precipitation.Changes in ELA between the LGM and pre-industrial era(PI) are compared. Our simulated ELA closely fits the published field data. In the YZDB, simulated LGM ELAs range from ca.3500 m to over 4900 m, representing declines of ca. 300–950 m. The ECHAM5 simulations better reflect the complex topographic features than most coarse-resolution climate models,and the ELA distribution is controlled by the spatial arrangement of river valley systems and mountain ranges and their impact on precipitation. Compared with the PI era, most of the monsoon precipitation in the LGM was concentrated in the YZDB, which is the main driver of glacial extension and the differential response of the downstream and midstream basins.展开更多
The westerly winds and East Asian summer monsoon play a leading role in climate change of southwestern North America and eastern Asia since the Last Glacial Maximum(LGM),respectively.Their convergence in arid and semi...The westerly winds and East Asian summer monsoon play a leading role in climate change of southwestern North America and eastern Asia since the Last Glacial Maximum(LGM),respectively.Their convergence in arid and semi-arid regions of the Asian continent(AAC)makes the regional climate change more complicated on the millennial-scale.There are still limitations in applying paleoclimate records and climate simulations of characteristic periods to investigate climate change patterns since the LGM in this region.In this study,we adopt two indexes indicating effective moisture and rely on a continuous simulation,a time slice simulation,and numerous paleoclimate records to comprehensively investigate the climate change modes and their driving mechanisms since the LGM in AAC.Results demonstrate a millennial-scale climate differentiation phenomenon and three climate change modes possibly occurring in AAC since the LGM.The western AAC largely controlled by the westerly winds is featured as wet climates during the LGM but relatively dry climates during the mid-Holocene(MH),coinciding with the climate change mode in southwestern North America.Conversely,dry conditions during the LGM and relatively wet conditions during the MH are reflected in eastern AAC governed by the East Asian summer monsoon,which leans to the climate change mode in eastern Asia.If climate change in central AAC is forced by the interaction of two circulations,it expresses wet conditions in both the LGM and MH,tending to a combination of the southwestern North American and eastern Asian modes.Precipitation and evaporation exert different intensities in influencing three climate modes of different periods.Furthermore,we identify the significant driving effects of greenhouse gases and ice sheets on westerly-dominated zones of AAC,while orbit-driven insolation on monsoon-dominated zones of AAC.展开更多
Paleoclimate reconstructions show that the arid Central Asia(ACA)is characterized by a wetting trend from the midHolocene(MH)to the Preindustrial period(PI),which has been acknowledged to be a result of increased mean...Paleoclimate reconstructions show that the arid Central Asia(ACA)is characterized by a wetting trend from the midHolocene(MH)to the Preindustrial period(PI),which has been acknowledged to be a result of increased mean precipitation.However,a systemic understanding of its governing dynamics remains elusive.Based on model outputs from 13 climate models from the Paleoclimate Model Intercomparison Project phase 4(PMIP4)and proxy records from ACA,here we show that increase in mean precipitation in ACA can be attributed to changes in water vapor source and its transport intensity in winter(December,January,and February)and spring(March,April,and May).In particular,the increase in water vapor supply in winter is associated with the southerly wind anomaly over the northwestern Indian Ocean and Central Asia,caused by an overall weakening of the Asian winter monsoon.This is conducive to water vapor transport from the upwind regions(e.g.,Mediterranean)to ACA.Meanwhile,water vapor supply from the eastern Iceland is also enhanced due to a negative North Atlantic Oscillation-like(NAO-like)atmospheric circulation pattern caused by sea ice expansion in the North Atlantic.In spring,evaporation over land and inland lakes is enhanced by increased insolation in the Northern Hemisphere,which increases atmospheric humidity that fuels midlatitude westerlies to enhance ACA precipitation.In addition,weakened atmospheric subsidence over ACA in winter and spring also contributes to the increased precipitation.Overall,our results indicate that paleoclimate modeling is of great importance for disentangling governing dynamics accounting for reconstructed climate phenomena that might be a synergic consequence of several processes operating in different seasons.展开更多
基金supported by the National Natural Science Foundation of China(42101149)the China Postdoctoral Science Foundation(2022M711441)the Swedish Research Council(Vetenskapsr?det)(2017-04232,2022-03617)。
文摘The term“Holocene temperature conundrum”refers to the inconsistencies between proxy-based reconstructions and transient model simulations,and it challenges our understanding of global temperature evolution during the Holocene.Climate reconstructions indicate a cooling trend following the Holocene Thermal Maximum,while model simulations indicate a consistent warming trend due to icesheet retreat and rising greenhouse gas concentrations.Various factors,such as seasonal biases and overlooked feedback processes,have been proposed as potential causes for this discrepancy.In this study,we examined the impact of vegetation-climate feedback on the temperature anomaly patterns in East Asia during the mid-Holocene(~6 ka).By utilizing the fully coupled Earth system model EC-Earth and performing simulations with and without coupled dynamic vegetation,our objective was to isolate the influence of vegetation changes on regional temperature patterns.Our findings reveal that vegetation-climate feedback contributed to warming across most of East Asia,resulting in spatially diverse temperature changes during the mid-Holocene and significantly improved model-data agreement.These results high-light the crucial role of vegetation-climate feedback in addressing the Holocene temperature conundrum and emphasize its importance for simulating accurate climate scenarios.
基金The Second Tibetan Plateau Scientific Expedition and Research Program (STEP),No.2019QZKK0902Key Research and Development Program of Xizang Uygur Autonomous Region,No.XZ202301ZY0039GNational Natural Science Foundation of China,No.42305178, No.91747207, No.41790434。
文摘Glaciers in the Yarlung Zangbo Downstream Basin(YZDB) are sensitive to global climate change. The equilibrium-line altitude(ELA) is a key indicator of glacial development.Current models for simulating the meteorological ELA underestimate the extent of glacial advance during the Last Glacial Maximum(LGM) in the YZDB and cannot explain the large-scale glacial extension compared with the Yarlung Zangbo Midstream Basin(YZMB). In this study, the distribution of ELA in the LGM is reconstructed using high-resolution 80-km ECHAM5 simulations and empirical relationships between temperature and precipitation.Changes in ELA between the LGM and pre-industrial era(PI) are compared. Our simulated ELA closely fits the published field data. In the YZDB, simulated LGM ELAs range from ca.3500 m to over 4900 m, representing declines of ca. 300–950 m. The ECHAM5 simulations better reflect the complex topographic features than most coarse-resolution climate models,and the ELA distribution is controlled by the spatial arrangement of river valley systems and mountain ranges and their impact on precipitation. Compared with the PI era, most of the monsoon precipitation in the LGM was concentrated in the YZDB, which is the main driver of glacial extension and the differential response of the downstream and midstream basins.
基金The National Natural Science Foundation of China,No.42077415,No.41822708The Second Tibetan Plateau Scientific Expedition and Research Program(STEP),No.2019QZKK0202+2 种基金The National Key Research and Development Program of China,No.2019YFC0507401The Strategic Priority Research Program of Chinese Academy of Sciences,No.XDA20100102The 111 Project,No.BP0618001。
文摘The westerly winds and East Asian summer monsoon play a leading role in climate change of southwestern North America and eastern Asia since the Last Glacial Maximum(LGM),respectively.Their convergence in arid and semi-arid regions of the Asian continent(AAC)makes the regional climate change more complicated on the millennial-scale.There are still limitations in applying paleoclimate records and climate simulations of characteristic periods to investigate climate change patterns since the LGM in this region.In this study,we adopt two indexes indicating effective moisture and rely on a continuous simulation,a time slice simulation,and numerous paleoclimate records to comprehensively investigate the climate change modes and their driving mechanisms since the LGM in AAC.Results demonstrate a millennial-scale climate differentiation phenomenon and three climate change modes possibly occurring in AAC since the LGM.The western AAC largely controlled by the westerly winds is featured as wet climates during the LGM but relatively dry climates during the mid-Holocene(MH),coinciding with the climate change mode in southwestern North America.Conversely,dry conditions during the LGM and relatively wet conditions during the MH are reflected in eastern AAC governed by the East Asian summer monsoon,which leans to the climate change mode in eastern Asia.If climate change in central AAC is forced by the interaction of two circulations,it expresses wet conditions in both the LGM and MH,tending to a combination of the southwestern North American and eastern Asian modes.Precipitation and evaporation exert different intensities in influencing three climate modes of different periods.Furthermore,we identify the significant driving effects of greenhouse gases and ice sheets on westerly-dominated zones of AAC,while orbit-driven insolation on monsoon-dominated zones of AAC.
基金supported by the National Program on Key Basic Research Project of China(Grant No.2018YFA0606403)。
文摘Paleoclimate reconstructions show that the arid Central Asia(ACA)is characterized by a wetting trend from the midHolocene(MH)to the Preindustrial period(PI),which has been acknowledged to be a result of increased mean precipitation.However,a systemic understanding of its governing dynamics remains elusive.Based on model outputs from 13 climate models from the Paleoclimate Model Intercomparison Project phase 4(PMIP4)and proxy records from ACA,here we show that increase in mean precipitation in ACA can be attributed to changes in water vapor source and its transport intensity in winter(December,January,and February)and spring(March,April,and May).In particular,the increase in water vapor supply in winter is associated with the southerly wind anomaly over the northwestern Indian Ocean and Central Asia,caused by an overall weakening of the Asian winter monsoon.This is conducive to water vapor transport from the upwind regions(e.g.,Mediterranean)to ACA.Meanwhile,water vapor supply from the eastern Iceland is also enhanced due to a negative North Atlantic Oscillation-like(NAO-like)atmospheric circulation pattern caused by sea ice expansion in the North Atlantic.In spring,evaporation over land and inland lakes is enhanced by increased insolation in the Northern Hemisphere,which increases atmospheric humidity that fuels midlatitude westerlies to enhance ACA precipitation.In addition,weakened atmospheric subsidence over ACA in winter and spring also contributes to the increased precipitation.Overall,our results indicate that paleoclimate modeling is of great importance for disentangling governing dynamics accounting for reconstructed climate phenomena that might be a synergic consequence of several processes operating in different seasons.