期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
History,status and trend about the research of paleoseismology 被引量:15
1
作者 Yongkang Ran Qidong Deng 《Chinese Science Bulletin》 SCIE EI CAS 1999年第10期880-889,共10页
Paleoseismology was originated in the late nineteen century, but the modern paleoseismology formed at the end of the 1970s. Three stages (appearance, development and maturity) can be identified for paleoseismology in ... Paleoseismology was originated in the late nineteen century, but the modern paleoseismology formed at the end of the 1970s. Three stages (appearance, development and maturity) can be identified for paleoseismology in China. Great progress has been made in the aspects of trench technology, recognition signs, dating method and theoretical model, however,they are not developed to such a level at which the highly reliable data can be provided for the probability prediction of earthquakes. The main questions further concerned in the future include the study of geological evidence, chronology and displacement, the theoretical model about reliability, paleoearthquake feature in the region and large-earthquake reoccurrence, and new branches related with the paleoseismology in the stable continent region, usage of new technology and frontier sciences. 展开更多
关键词 paleoseismology HISTORY development and QUESTIONS trends.
原文传递
The Seismic Induced Soft Sediment Deformation Structures in the Middle Jurassic of Western Qaidamu Basin 被引量:5
2
作者 LI Yong SHAO Zhufu +2 位作者 MAO Cui YANG Yuping LIU Shengxin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第4期979-988,共10页
Intervals of soft-sediment deformation structures are well-exposed in Jurassic lacustrine deposits in the western Qaidamu basin. Through field observation, many soft-sediment deformation structures can be identified, ... Intervals of soft-sediment deformation structures are well-exposed in Jurassic lacustrine deposits in the western Qaidamu basin. Through field observation, many soft-sediment deformation structures can be identified, such as convoluted bedding, liquefied sand veins, load and flame structures, slump structures and sliding-overlapping structures. Based on their genesis, soft-sediment deformation structures can be classified as three types: seismic induced structures, vertical loading structures, and horizontal shear structures. Based on their geometry and genesis analysis, they are seismic-induced structures. According to the characteristics of convoluted bedding structures and liquefied sand veins, it can be inferred that there were earthquakes greater than magnitude 6 in the study area during the middle Jurassic. Furthermore, the study of the slump structures and sliding- overlapping structures indicates that there was a southeastern slope during the middle Jurassic. Since the distance from the study area to the Altyn Mountain and the Altyn fault is no more than 10km, it can be also inferred that the Altyn Mountain existed then and that the AItyn strike-slip fault was active during the middle Jurassic. 展开更多
关键词 Soft-sediments deformation structure sliding-overlapping structure paleoseismology AItyn strike-slip fault
下载PDF
Paleoseismological Study of the Late Quaternary Slip-rate along the South Barkol Basin Fault and Its Tectonic Implications,Eastern Tian Shan,Xinjiang 被引量:1
3
作者 WU Fuyao RAN Yongkang +2 位作者 XU Liangxin CAO Jun LI An 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期429-442,共14页
The easternmost Tian Shan lies in eastern Xinjiang, Central Asia. The South Barkol basin fault(SBF) in the northern part of the easternmost Tian Shan is a major tectonic structure in this orogenic region. The late Q... The easternmost Tian Shan lies in eastern Xinjiang, Central Asia. The South Barkol basin fault(SBF) in the northern part of the easternmost Tian Shan is a major tectonic structure in this orogenic region. The late Quaternary activity, paleoseismology, and deformation characteristics of the fault provide important clues for understanding the tectonic process of the eastern Tian Shan orogen and implementing seismic mitigation. Through interpretation of high-resolution satellite images, unmanned aerial vehicle measurements, and detailed geological and geomorphic investigations, we suggest that the fault exhibits clear left-lateral slip along its western segment. Paleoseismic trenches dug near Xiongkuer reveal evidence of six large paleoearthquakes. The four latest paleoearthquakes were dated: the oldest event occurred at 4663 BC–3839 BC. Data on the horizontal offsets along the probable 1842 Barkol earthquake coseismic rupture suggest clear multiple relationships between cumulative offsets and possible ~4 m of coseismic left-lateral slip per event. From the cumulative offsets and 14 C sample ages, we suggest an average Holocene left-lateral slip rate of 2.4–2.8 mm/a on the SBF, accounting for ~80% of lateral deformation within the entire eastern Tian Shan fault system. This result is comparable with the shortening rate of 2–4 mm/a in the whole eastern Tian Shan, indicating an equal role of strike-slip tectonics and compressional tectonics in this orogen, and that the SBF may accommodate substantial lateral tectonic deformation. 展开更多
关键词 Eastern Tian Shan South Barkol basin fault paleoseismology left-lateral offset slip rate Eastern margin of Tibetan Plateau Proto-Tethys
下载PDF
Paleoseismological Analysis Along the Astara Fault System(Talesh Mountain, North Iran)
4
作者 Amir BARZEGARI Manouchehr GHORASHI +3 位作者 Hamid NAZARI Michel FONTUGNE Mohammad A. SHOKRI Mohsen POURKERMANI 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第5期1553-1572,共20页
The Astara Fault System(AFS) is located in the northwest Alborz, east of Talesh Mountain(TM) and west of the South Caspian Basin(SCB). The AFS is one of the basement rock faults in Iran that is heavily involved ... The Astara Fault System(AFS) is located in the northwest Alborz, east of Talesh Mountain(TM) and west of the South Caspian Basin(SCB). The AFS is one of the basement rock faults in Iran that is heavily involved in seismotectonic activity of the Talesh region, and to which subsidence of the SCB is attributed. There is little information available concerning previous AFS seismic activities and its properties. In order to elucidate the seismic behavior and activities of the AFS, we conducted a research study on paleoseismology of the fault. Based on paleoseismic evidence, two scenarios could be taken into consideration, one of which has three and another has four seismic events with magnitudes Mw in the range of 6.7 to 7.2. Evidence of these seismic events is within sedimentary succession as they have occurred during the past 3 ka(this age is determined based on the deposition rate of the region). Six carbon samples were taken for C^14 age determination tests, the results of which clearly demonstrated that the EvIV(scenario A) and EvⅢ(scenario B) had occurred before 27,444 cal BP, while other events occurred in the time period between 27,444 cal BP and 3 ka ago. If we consider the occurrence of three or four seismic events(based on the two scenarios) to be between 27,444 cal BP and 3 ka ago, the average recurrence interval is 7,119 ± 1,017, but evidence for these events has been removed. If we assume EvI to be the youngest event(in both scenarios), the minimum elapsed time is therefore 3 ka. 展开更多
关键词 paleoseismology morphotectonic active fault Astara fault system Iran
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部