期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
CP-AnemiC:A conjunctival pallor dataset and benchmark for anemia detection in children 被引量:1
1
作者 Peter Appiahene Kunal Chaturvedi +2 位作者 Justice Williams Asare Emmanuel Timmy Donkoh Mukesh Prasad 《Medicine in Novel Technology and Devices》 2023年第2期226-233,共8页
Anemia is a universal public health issue,which occurs as the result of a reduction in red blood cells.This disease is common among children in Africa and other developing countries.If not treated early,children may s... Anemia is a universal public health issue,which occurs as the result of a reduction in red blood cells.This disease is common among children in Africa and other developing countries.If not treated early,children may suffer longterm consequences such as impairment in social,emotional,and cognitive functioning.Early detection of anemia in children is highly desirable for effective treatment measures.While there has been research into the development of computer-aided diagnosis(CAD)systems for anemia diagnosis,a significant proportion of these studies encountered limitations when working with limited datasets.To overcome the existing issues,this paper proposes a large dataset,named CP-AnemiC,comprising 710 individuals(range of age,6–59 months),gathered from several hospitals in Ghana.The conjunctiva image-based dataset is supported with Hb levels(g/dL)annotations for accurate diagnosis of anemia.A joint deep neural network is developed that simultaneously classifies anemia and estimates hemoglobin levels(g/dL)based on the conjunctival pallor images.This paper conducts a comprehensive experiment on the CP-AnemiC dataset.The experimental results demonstrate the efficacy of the joint deep neural network in both the tasks of anemia classification and Hb levels(g/dL)estimation. 展开更多
关键词 ANEMIA HEMOGLOBIN Conjunctiva pallor Convolutional neural network Deep learning Classification Regression
原文传递
微滴量复方托吡卡胺在新生儿眼底病变筛查中的应用
2
作者 陈艾 赵小莉 李会 《护理研究》 2024年第23期4278-4281,共4页
目的:探讨微滴量复方托吡卡胺在减轻新生儿眼底筛查过程中眶周苍白的临床效果。方法:选取2023年5月—8月于我院眼科使用眼底广域数字成像系统(Retcam3)进行眼底病变筛查的84名新生儿为研究对象,采用随机数字表法将其分为标准液滴组和微... 目的:探讨微滴量复方托吡卡胺在减轻新生儿眼底筛查过程中眶周苍白的临床效果。方法:选取2023年5月—8月于我院眼科使用眼底广域数字成像系统(Retcam3)进行眼底病变筛查的84名新生儿为研究对象,采用随机数字表法将其分为标准液滴组和微滴组各42人,标准液滴组新生儿双眼予以标准液滴大小的复方托吡卡胺点眼3次,微滴组新生儿双眼采用微滴管辅助以同样的方式予以微滴量的复方托吡卡胺点眼3次。分别于第1次点眼后20、45、60 min对新生儿眶周苍白程度进行评分,并于点眼前、第1次点眼后45、60 min测量瞳孔直径。结果:筛查过程中,微滴组的新生儿眶周苍白程度评分及眶周苍白发生率在点眼后45、60 min时均低于标准液滴组,差异有统计学意义(P<0.05);两组散瞳效果差异无统计学意义(P>0.05)。结论:微滴量的复方托吡卡胺可以减轻新生儿眼底筛查过程由于散瞳药物引起的眶周苍白程度,并且能够达到与标准液滴量相同的散瞳效果。 展开更多
关键词 复方托吡卡胺 新生儿 眼底病变 早产儿 视网膜病变 眶周苍白 皮肤毒性反应 散瞳 筛查
下载PDF
Detection of anemia using conjunctiva images:A smartphone application approach 被引量:1
3
作者 Peter Appiahene Enoch Justice Arthur +3 位作者 Stephen Korankye Stephen Afrifa Justice Williams Asare Emmanuel Timmy Donkoh 《Medicine in Novel Technology and Devices》 2023年第2期169-180,共12页
Anemia is one of the public health issues that affect children and pregnant women globally.Anemia occurs when the level of red blood cells within the body is reduced.Detecting anemia requires expert blood draw for cli... Anemia is one of the public health issues that affect children and pregnant women globally.Anemia occurs when the level of red blood cells within the body is reduced.Detecting anemia requires expert blood draw for clinical analysis of hemoglobin quantity.Although this standard method is accurate,it is costive and consumes enough time,unlike the non-invasive approach which is cost-effective and takes less time.This study focused on pallor analysis and used images of the conjunctiva of the eyes to detect anemia using machine learning techniques.This study used a publicly available dataset of 710 images of the conjunctiva of the eyes acquired with a unique tool that eliminates any interference from ambient light.We combined Convolutional Neural Networks,Logistic Regression,and Gaussian Blur algorithm to develop a conjunctiva detection model and an anemia detection model which runs on a Fast API server connected to a frontend mobile app built with React Native.The developed model was embedded into a smartphone application that can detect anemia by capturing and processing a patient's conjunctiva with a sensitivity of 90%,a specificity of 95%,and an accuracy of 92.50%on average performance in about 50 s. 展开更多
关键词 Anemia detection pallor analysis CONJUNCTIVA Machine learning Red blood cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部