Increasing global environmental issues and depleting fossil fuel reserves has necessitated the need for alternative and sustainable fuel. In this paper, the effects of biodiesel and its blend on engine emission and pe...Increasing global environmental issues and depleting fossil fuel reserves has necessitated the need for alternative and sustainable fuel. In this paper, the effects of biodiesel and its blend on engine emission and performance characteristics in an internal combustion engine were analyzed. Biodiesel derived from the transesterification of raw palm oil was blended with diesel fuel at different proportions designated as PO5 (5% Biodiesel and 95% Diesel), PO10 (10% Biodiesel and 90% Diesel), PO15 (15% Biodiesel and 85% Diesel), PO20 (20% Biodiesel and 80% Diesel), PO50 (50% Biodiesel and 50% Diesel), PO85 (85% Biodiesel and 15% Diesel), and PO100 (100% Biodiesel). A Lombardini 2-cylinder, four-stroke direct injection diesel engine with a compression ratio of 22.8 was developed using Ricardo Wave software in which diesel, palm oil biodiesel blends and pure biodiesel are used in the model, and the obtained results were analysed and presented. The simulation was done under varying engine speeds of 1200 rpm to 3200 rpm at full load condition. Biodiesel and its blends are more environment-friendly and non-toxic when compared to diesel fuel;it also improves the mechanical efficiency of the engines, and above all can also lead to a reduction in poverty among rural dwellers. The obtained results showed that brake specific fuel consumption and brake thermal efficiency increased with palm oil biodiesel blends as compared to diesel fuel which might be a result of biodiesel’s lower heating value, and the increase in thermal energy may be a result of the oxygenation of the biodiesel blend as compared to pure diesel. In terms of brake torque, palm oil biodiesel blends were lesser than diesel fuel. The CO, HC, and NO<sub>x</sub> emissions of palm oil biodiesel blends decreased significantly compared to that of pure diesel. From this study, palm oil biodiesel emits lesser emissions than diesel fuel and its performance characteristics are similar to diesel fuel. Therefore, palm oil biodiesel can be used without any modifications directly in a diesel engine. In addition, it can also be used as blends as an alternative and sustainable fuel, decreasing air pollution, and increasing environmental sustainability.展开更多
Energy obtained from a variety of non-renewable sources is considered unsustainable. Various fossil fuels, such as petroleum, coal, and natural gas, are among these sources. The combustion of fossil fuels resulted in ...Energy obtained from a variety of non-renewable sources is considered unsustainable. Various fossil fuels, such as petroleum, coal, and natural gas, are among these sources. The combustion of fossil fuels resulted in the generation of greenhouse gases, which increased the amount of carbon dioxide in the atmosphere. Global warming and ozone layer degradation are the negative consequences. In a country like India, where consumable oils are still imported, it is sense to look at the possibility of using such unpalatable oils in CI engines that aren’t often utilized as cooking oil. Palm oil is a vegetable oil obtained from the monocarp of the oil palm’s crop. The main goal is to provide a low-cost, high-performance alternative to diesel. The possibility of palm oil as a realistic, modest, and effective hotspot for the generation of biodiesel is investigated in this research. The article is focused on the comparison of palm oil and diesel in terms of characteristics.展开更多
Bio-glycerol was synthesized from Cameroon palm kernel oil (PKO) through the transesterification procedure. Palm kernel oil extracted from palm kernel seeds using mechanical expression and solvent extraction was purif...Bio-glycerol was synthesized from Cameroon palm kernel oil (PKO) through the transesterification procedure. Palm kernel oil extracted from palm kernel seeds using mechanical expression and solvent extraction was purified and characterized by physico-chemical methods and used in the transesterification process to give biodiesel and bio-glycerol. The biodiesel was purified and characterized as reported in previous articles. Our focus in this article is on glycerol, an important by-product of the transesterification process which has potential pharmaceutical, cosmetic and engineering applications. The bio-glycerol was purified by acidification and the purified glycerol was subjected to physical and chemical characterization. The specific gravity of glycerol was obtained as 1.2 kg/L, viscosity at 40°C gave 1500 cSt and 500 cSt at 100°C;pH was 7.4;the flash point was 160°C, and the ASTM color was 2.0 before purification and zero after purification. The sulfur content was 0.016%w/v. This sulfur content is low thus posing no environment threat. The chemical composition of the synthesized bio-glycerol determined using IR spectroscopy and gas chromatography-mass spectrometry (GC-MS) confirmed the known chemical structure of glycerol. The purification and analysis of bio-glycerol is important as it can find applications in the pharmaceutical, cosmetic and food industries inter alia.展开更多
Biodiesel fuels are considered an alternative to fossil fuels. This is one of the effective means of transferring solar energy to dynamic energy via photosynthesis. It is also being considered in order to reduce the l...Biodiesel fuels are considered an alternative to fossil fuels. This is one of the effective means of transferring solar energy to dynamic energy via photosynthesis. It is also being considered in order to reduce the levels of carbon dioxide production worldwide. Biodiesel fuels are a renewable, biodegradable, and clean energy source. Producing enough biofuels to replace fossil fuels will bring the advantages of reduced air pollution and reduced other environmental impacts of fossil fuels. In this study, the response surface methodology (RSM) was used to design the experimental runs and to discuss the manufacturing variables on the transesterification of palm oil into fatty acid methyl ester (i.e. biodiesel fuel). The variation of the degree of effect for each variable in the transesterification process was observed. A second-order model was obtained to predict the yield of biodiesel fuel and the viscosity as a function of the reaction time, the mass fraction of catalyst in methanol and the molar ratio of methanol to plant oil. The experimental data of the yield and the viscosity of biodiesel fuels in different manufacturing variables are discussed in this study. Analysis of variance (ANOVA) was also applied to discuss the main factor and interaction factor effects of the manufacturing variables on the responses of the yield of unrefined biodiesel fuels. The shortage of farmland in Taiwan is a problem that needs to be solved before mass propagation of biofuels can be accomplished. In southeastern Asia, there are many farms and most energy farm products are cultivated (e.g. palm oil or Jatropha oil). In addition to sunflowers and soybeans in Taiwan, those energy farm products are possible choices for production of biodiesel fuel in Taiwan. The cooperation between Indonesia and Taiwan on the plantation of palm or Jatropha trees in Indonesia has conducted and will be one of the possible ways to solve the problem of the shortage of energy farm products in Taiwan.展开更多
文摘Increasing global environmental issues and depleting fossil fuel reserves has necessitated the need for alternative and sustainable fuel. In this paper, the effects of biodiesel and its blend on engine emission and performance characteristics in an internal combustion engine were analyzed. Biodiesel derived from the transesterification of raw palm oil was blended with diesel fuel at different proportions designated as PO5 (5% Biodiesel and 95% Diesel), PO10 (10% Biodiesel and 90% Diesel), PO15 (15% Biodiesel and 85% Diesel), PO20 (20% Biodiesel and 80% Diesel), PO50 (50% Biodiesel and 50% Diesel), PO85 (85% Biodiesel and 15% Diesel), and PO100 (100% Biodiesel). A Lombardini 2-cylinder, four-stroke direct injection diesel engine with a compression ratio of 22.8 was developed using Ricardo Wave software in which diesel, palm oil biodiesel blends and pure biodiesel are used in the model, and the obtained results were analysed and presented. The simulation was done under varying engine speeds of 1200 rpm to 3200 rpm at full load condition. Biodiesel and its blends are more environment-friendly and non-toxic when compared to diesel fuel;it also improves the mechanical efficiency of the engines, and above all can also lead to a reduction in poverty among rural dwellers. The obtained results showed that brake specific fuel consumption and brake thermal efficiency increased with palm oil biodiesel blends as compared to diesel fuel which might be a result of biodiesel’s lower heating value, and the increase in thermal energy may be a result of the oxygenation of the biodiesel blend as compared to pure diesel. In terms of brake torque, palm oil biodiesel blends were lesser than diesel fuel. The CO, HC, and NO<sub>x</sub> emissions of palm oil biodiesel blends decreased significantly compared to that of pure diesel. From this study, palm oil biodiesel emits lesser emissions than diesel fuel and its performance characteristics are similar to diesel fuel. Therefore, palm oil biodiesel can be used without any modifications directly in a diesel engine. In addition, it can also be used as blends as an alternative and sustainable fuel, decreasing air pollution, and increasing environmental sustainability.
文摘Energy obtained from a variety of non-renewable sources is considered unsustainable. Various fossil fuels, such as petroleum, coal, and natural gas, are among these sources. The combustion of fossil fuels resulted in the generation of greenhouse gases, which increased the amount of carbon dioxide in the atmosphere. Global warming and ozone layer degradation are the negative consequences. In a country like India, where consumable oils are still imported, it is sense to look at the possibility of using such unpalatable oils in CI engines that aren’t often utilized as cooking oil. Palm oil is a vegetable oil obtained from the monocarp of the oil palm’s crop. The main goal is to provide a low-cost, high-performance alternative to diesel. The possibility of palm oil as a realistic, modest, and effective hotspot for the generation of biodiesel is investigated in this research. The article is focused on the comparison of palm oil and diesel in terms of characteristics.
文摘Bio-glycerol was synthesized from Cameroon palm kernel oil (PKO) through the transesterification procedure. Palm kernel oil extracted from palm kernel seeds using mechanical expression and solvent extraction was purified and characterized by physico-chemical methods and used in the transesterification process to give biodiesel and bio-glycerol. The biodiesel was purified and characterized as reported in previous articles. Our focus in this article is on glycerol, an important by-product of the transesterification process which has potential pharmaceutical, cosmetic and engineering applications. The bio-glycerol was purified by acidification and the purified glycerol was subjected to physical and chemical characterization. The specific gravity of glycerol was obtained as 1.2 kg/L, viscosity at 40°C gave 1500 cSt and 500 cSt at 100°C;pH was 7.4;the flash point was 160°C, and the ASTM color was 2.0 before purification and zero after purification. The sulfur content was 0.016%w/v. This sulfur content is low thus posing no environment threat. The chemical composition of the synthesized bio-glycerol determined using IR spectroscopy and gas chromatography-mass spectrometry (GC-MS) confirmed the known chemical structure of glycerol. The purification and analysis of bio-glycerol is important as it can find applications in the pharmaceutical, cosmetic and food industries inter alia.
文摘Biodiesel fuels are considered an alternative to fossil fuels. This is one of the effective means of transferring solar energy to dynamic energy via photosynthesis. It is also being considered in order to reduce the levels of carbon dioxide production worldwide. Biodiesel fuels are a renewable, biodegradable, and clean energy source. Producing enough biofuels to replace fossil fuels will bring the advantages of reduced air pollution and reduced other environmental impacts of fossil fuels. In this study, the response surface methodology (RSM) was used to design the experimental runs and to discuss the manufacturing variables on the transesterification of palm oil into fatty acid methyl ester (i.e. biodiesel fuel). The variation of the degree of effect for each variable in the transesterification process was observed. A second-order model was obtained to predict the yield of biodiesel fuel and the viscosity as a function of the reaction time, the mass fraction of catalyst in methanol and the molar ratio of methanol to plant oil. The experimental data of the yield and the viscosity of biodiesel fuels in different manufacturing variables are discussed in this study. Analysis of variance (ANOVA) was also applied to discuss the main factor and interaction factor effects of the manufacturing variables on the responses of the yield of unrefined biodiesel fuels. The shortage of farmland in Taiwan is a problem that needs to be solved before mass propagation of biofuels can be accomplished. In southeastern Asia, there are many farms and most energy farm products are cultivated (e.g. palm oil or Jatropha oil). In addition to sunflowers and soybeans in Taiwan, those energy farm products are possible choices for production of biodiesel fuel in Taiwan. The cooperation between Indonesia and Taiwan on the plantation of palm or Jatropha trees in Indonesia has conducted and will be one of the possible ways to solve the problem of the shortage of energy farm products in Taiwan.