目前以实测蒸腾量、田间持水量或累计太阳辐射作为灌水依据建立的温室作物蒸腾模型中,其灌水依据的确定所需监测参数项多,且对监测仪器精度要求较高。基于此,该研究以20 cm蒸发皿蒸发量为灌水依据,设置日光温室椰糠盆栽番茄3个生育时期...目前以实测蒸腾量、田间持水量或累计太阳辐射作为灌水依据建立的温室作物蒸腾模型中,其灌水依据的确定所需监测参数项多,且对监测仪器精度要求较高。基于此,该研究以20 cm蒸发皿蒸发量为灌水依据,设置日光温室椰糠盆栽番茄3个生育时期的不同蒸发皿系数灌水量水平(苗期:0.2(ET1)、0.4(ET2)、0.6(ET3);开花坐果期:0.3(ET1)、0.5(ET2)、0.7(ET3);成熟采摘期:0.7(ET1)、0.9(ET2)、1.1(ET3)),对番茄株产量、水分利用效率(Water Use Efficiency,WUE)及品质进行综合评价,筛选出较优灌水量水平;基于较优灌水量水平建立蒸腾模型,并以其余两个处理实测值对模型进行验证。结果表明:ET2处理株高、可溶性糖和可溶性蛋白质含量分别显著高于其他处理8.54%~14.27%、28.61%~32.99%和38.70%~70.83%;相较于ET3处理,ET2处理可在仅降低株产量2.50%情况下提高WUE10.05%和节约灌水量22.23%。对株产量、WUE及品质进行主成分分析,综合得分最高处理为ET2;各因子对日蒸腾量的影响程度大小依次为日累积净辐射(M)、日平均温度(T)、叶面积指数(Leaf Area Index,LAI),日蒸腾量与M、T和LAI均呈极显著正相关;该研究基于ET2处理所建立的椰糠栽培番茄蒸腾模型拟合较好,均方根误差为49.88 g,相对误差为11.88%。研究结果可为日光温室椰糠栽培番茄高效生产和智能化灌溉提供科学依据和决策参考。展开更多
Evaporation controlled by meteorological parameters plays a crucial role in hydrology, meteorology and water resources management. An insight view of long-term variation in evaporation will help understanding the effe...Evaporation controlled by meteorological parameters plays a crucial role in hydrology, meteorology and water resources management. An insight view of long-term variation in evaporation will help understanding the effects of climate change and provide useful information for rational utilization of water resources, especially in the arid land where the shortage of water resources exists. However, the lack of data on evaporation led to difficulties in assessing the impacts of climate change on evaporation, especially in arid mountainous area. This study investigated the long-term variation of the pan-evaporation (Ep) measured by E601 type evaporation pan and its influencing climatic factors at both northern and southern slopes of the Tianshan Mountains in Xinjiang of China using the ensemble empirical mode decomposition method and Path analysis. The results revealed that Eps at both northern and southern slopes had obvious interdecadal variation within cycles of 3-4 and 7-8 years. Eps at both slopes sharply decreased in early 1980s, but increased after late 1990s. Path analysis showed that the 3-4 years cycle of Ep at the northern and southern slopes was mainly dependent upon actual water vapor pressure with a negative direct path coefficient of-0.515 and sunshine duration with a positive direct path coefficient of 0.370, respectively. The variation of Ep with cycle of 7-8 years at the northern slope was attributed to the wind speed with a direct path coefficient of 0.774. Average temperature had a direct path coefficient of 0.813 in 7-8 years cycle at the southern slope. The assessment of Ep variation and its causes provides information essential for a good understanding of hydrologic cycle and regional climate of arid mountainous regions in Xinjiang of China and offers a theoretical reference for distribution and utilization of water resources.展开更多
文摘目前以实测蒸腾量、田间持水量或累计太阳辐射作为灌水依据建立的温室作物蒸腾模型中,其灌水依据的确定所需监测参数项多,且对监测仪器精度要求较高。基于此,该研究以20 cm蒸发皿蒸发量为灌水依据,设置日光温室椰糠盆栽番茄3个生育时期的不同蒸发皿系数灌水量水平(苗期:0.2(ET1)、0.4(ET2)、0.6(ET3);开花坐果期:0.3(ET1)、0.5(ET2)、0.7(ET3);成熟采摘期:0.7(ET1)、0.9(ET2)、1.1(ET3)),对番茄株产量、水分利用效率(Water Use Efficiency,WUE)及品质进行综合评价,筛选出较优灌水量水平;基于较优灌水量水平建立蒸腾模型,并以其余两个处理实测值对模型进行验证。结果表明:ET2处理株高、可溶性糖和可溶性蛋白质含量分别显著高于其他处理8.54%~14.27%、28.61%~32.99%和38.70%~70.83%;相较于ET3处理,ET2处理可在仅降低株产量2.50%情况下提高WUE10.05%和节约灌水量22.23%。对株产量、WUE及品质进行主成分分析,综合得分最高处理为ET2;各因子对日蒸腾量的影响程度大小依次为日累积净辐射(M)、日平均温度(T)、叶面积指数(Leaf Area Index,LAI),日蒸腾量与M、T和LAI均呈极显著正相关;该研究基于ET2处理所建立的椰糠栽培番茄蒸腾模型拟合较好,均方根误差为49.88 g,相对误差为11.88%。研究结果可为日光温室椰糠栽培番茄高效生产和智能化灌溉提供科学依据和决策参考。
基金funded by the National Basic Research Program of China(2012CB956204)the Special Funds for Key Laboratories of the Xinjiang Uygur Autonomous Region(2014KL015)
文摘Evaporation controlled by meteorological parameters plays a crucial role in hydrology, meteorology and water resources management. An insight view of long-term variation in evaporation will help understanding the effects of climate change and provide useful information for rational utilization of water resources, especially in the arid land where the shortage of water resources exists. However, the lack of data on evaporation led to difficulties in assessing the impacts of climate change on evaporation, especially in arid mountainous area. This study investigated the long-term variation of the pan-evaporation (Ep) measured by E601 type evaporation pan and its influencing climatic factors at both northern and southern slopes of the Tianshan Mountains in Xinjiang of China using the ensemble empirical mode decomposition method and Path analysis. The results revealed that Eps at both northern and southern slopes had obvious interdecadal variation within cycles of 3-4 and 7-8 years. Eps at both slopes sharply decreased in early 1980s, but increased after late 1990s. Path analysis showed that the 3-4 years cycle of Ep at the northern and southern slopes was mainly dependent upon actual water vapor pressure with a negative direct path coefficient of-0.515 and sunshine duration with a positive direct path coefficient of 0.370, respectively. The variation of Ep with cycle of 7-8 years at the northern slope was attributed to the wind speed with a direct path coefficient of 0.774. Average temperature had a direct path coefficient of 0.813 in 7-8 years cycle at the southern slope. The assessment of Ep variation and its causes provides information essential for a good understanding of hydrologic cycle and regional climate of arid mountainous regions in Xinjiang of China and offers a theoretical reference for distribution and utilization of water resources.