With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dan...With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.展开更多
Geological hazard is an adverse geological condition that can cause loss of life and property.Accurate prediction and analysis of geological hazards is an important and challenging task.In the past decade,there has be...Geological hazard is an adverse geological condition that can cause loss of life and property.Accurate prediction and analysis of geological hazards is an important and challenging task.In the past decade,there has been a great expansion of geohazard detection data and advancement in data-driven simulation techniques.In particular,great efforts have been made in applying deep learning to predict geohazards.To understand the recent progress in this field,this paper provides an overview of the commonly used data sources and deep neural networks in the prediction of a variety of geological hazards.展开更多
After long-term development, mathematical geology has today become an independent discipline. Big Data science, which has become a new scientific paradigm in the 21st century, gives rise to the geological Big Data, i....After long-term development, mathematical geology has today become an independent discipline. Big Data science, which has become a new scientific paradigm in the 21st century, gives rise to the geological Big Data, i.e. mathematical geology and quantitative geoscience. Thanks to a robust macro strategy for big data, China's quantitative geoscience and geological big data's rapid development meets present requirements and has kept up with international levels. This paper presents China's decade-long achievements in quantitative prediction and assessment of mineral resources, geoscience information and software systems, geological information platform development, etc., with an emphasis on application of geological big data in informatics, quantitative mineral prediction, geological environment and disaster management, digital land survey, digital city, etc. Looking ahead, mathematical geology is moving towards "Digital Geology", "Digital Land" and "Geological Cloud", eventually realizing China's grand "Digital China" blueprint, and these valuable results will be showcased on the international academic arena.展开更多
Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this ana...Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.展开更多
MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical,...MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical, geochemical and remote sensing data. It overlays geological database management, geological background and geological abnormality analysis, image processing of remote sensing and comprehensive abnormality analysis, etc.. It puts forward an integrative solution for the application of GIS in basic-level units and the construction of information engineering in the geological field. As the popularization of computer networks and the request of data sharing, it is necessary to extend its functions in data management so that all its data files can be accessed in the network server. This paper utilizes some MAPGIS functions for the second development and ADO (access data object) technique to access multi-source geological data in SQL Server databases. Then remote visiting and congruous management will be realized in the MORPAS system.展开更多
This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it i...This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it introduces the R/S analysis for time series analysis into spacial series to calculate the structural fractal dimensions of ranges and standard deviation for spacial series data -and to establish the fractal dimension matrix and the procedures in plotting the fractal dimension anomaly diagram with vector distances of fractal dimension . At last , it has examples of its application .展开更多
Data warehouse (DW), a new technology invented in 1990s, is more useful for integrating and analyzing massive data than traditional database. Its application in geology field can be divided into 3 phrases: 1992-1996,...Data warehouse (DW), a new technology invented in 1990s, is more useful for integrating and analyzing massive data than traditional database. Its application in geology field can be divided into 3 phrases: 1992-1996, commercial data warehouse (CDW) appeared; 1996-1999, geological data warehouse (GDW) appeared and the geologists or geographers realized the importance of DW and began the studies on it, but the practical DW still followed the framework of DB; 2000 to present, geological data warehouse grows, and the theory of geo-spatial data warehouse (GSDW) has been developed but the research in geological area is still deficient except that in geography. Although some developments of GDW have been made, its core still follows the CDW-organizing data by time and brings about 3 problems: difficult to integrate the geological data, for the data feature more space than time; hard to store the massive data in different levels due to the same reason; hardly support the spatial analysis if the data are organized by time as CDW does. So the GDW should be redesigned by organizing data by scale in order to store mass data in different levels and synthesize the data in different granularities, and choosing space control points to replace the former time control points so as to integrate different types of data by the method of storing one type data as one layer and then to superpose the layers. In addition, data cube, a wide used technology in CDW, will be no use in GDW, for the causality among the geological data is not so obvious as commercial data, as the data are the mixed result of many complex rules, and their analysis always needs the special geological methods and software; on the other hand, data cube for mass and complex geo-data will devour too much store space to be practical. On this point, the main purpose of GDW may be fit for data integration unlike CDW for data analysis.展开更多
The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luan...The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luanchuan,the case study area,southwestern Henan Province,is an important molybdenum-tungsten -lead-zinc polymetallic belt in China.展开更多
’Long tail’data is the difficult-to-get-at data that sits in libraries,institutes and on the computers of individual scientists.Informatics specialists like to contrast it with the smaller number of large,more acces...’Long tail’data is the difficult-to-get-at data that sits in libraries,institutes and on the computers of individual scientists.Informatics specialists like to contrast it with the smaller number of large,more accessible data sets(e.g.Sinha et al.,2013).The name’long tail’derives from graphs drawn of the size of data sets against their number:there are relatively few large datasets and a lot of smaller ones.展开更多
Geo-data is a foundation for the prediction and assessment of ore resources, so managing and making full use of those data, including geography database, geology database, mineral deposits database, aeromagnetics data...Geo-data is a foundation for the prediction and assessment of ore resources, so managing and making full use of those data, including geography database, geology database, mineral deposits database, aeromagnetics database, gravity database, geochemistry database and remote sensing database, is very significant. We developed national important mining zone database (NIMZDB) to manage 14 national important mining zone databases to support a new round prediction of ore deposit. We found that attention should be paid to the following issues: ① data accuracy: integrity, logic consistency, attribute, spatial and time accuracy; ② management of both attribute and spatial data in the same system;③ transforming data between MapGIS and ArcGIS; ④ data sharing and security; ⑤ data searches that can query both attribute and spatial data. Accuracy of input data is guaranteed and the search, analysis and translation of data between MapGIS and ArcGIS has been made convenient via the development of a checking data module and a managing data module based on MapGIS and ArcGIS. Using AreSDE, we based data sharing on a client/server system, and attribute and spatial data are also managed in the same system.展开更多
Hyperspectral remote sensing is now a frontier of the remote sensing technology. Airborne hyperspectral remote sensing data have hundreds of narrow bands to obtain complete and continuous ground-object spectra. Theref...Hyperspectral remote sensing is now a frontier of the remote sensing technology. Airborne hyperspectral remote sensing data have hundreds of narrow bands to obtain complete and continuous ground-object spectra. Therefore, they can be effectively used to identify these grotmd objects which are difficult to discriminate by using wide-band data, and show much promise in geological survey. At the height of 1500 m, have 36 bands in visible to the CASI hyperspectral data near-infrared spectral range, with a spectral resolution of 19 nm and a space resolution of 0.9 m. The SASI data have 101 bands in the shortwave infrared spectral range, with a spectral resolution of 15 nm and a space resolution of 2.25 m. In 2010, China Geological Survey deployed an airborne CASI/SASI hyperspectral measurement project, and selected the Liuyuan and Fangshankou areas in the Beishan metallogenic belt of Gansu Province, and the Nachitai area of East Kunlun metallogenic belt in Qinghai Province to conduct geological survey. The work period of this project was three years.展开更多
Characterized by lithological diversity and rich mineral resources, Benshangul-Gumuz National Regional State located in Asosa Zones, Western Ethiopia has been investigated for geological mapping and morpho-structural ...Characterized by lithological diversity and rich mineral resources, Benshangul-Gumuz National Regional State located in Asosa Zones, Western Ethiopia has been investigated for geological mapping and morpho-structural lineaments extraction using PALSAR (Phased Array type L-band Synthetic Aperture Radar ) Fine Beam Single (FBS) L-HH polarization and Landsat-5 TM (Thematic Mapper ) datasets. These data were preprocessed to retrieve ground surface reflectance and backscatter coefficients. To overcome the geometry acquisition between the two sensors, they were geometrically and topographically rectified using ASTER-V2 DEM. Intensity-Hue-Saturation, directional filters and automatic lineaments extraction were applied on the datasets for lithological units’ discrimination and structural delimitation for potential mineral exploration. The obtained results showed good relationship among the topographic morphology, rock-substrate, structural variations properties, and drainage network. The spectral variations were easily associated with lithological units. Likewise, the morpho-structural information highlighted in the PALSAR image was visible without altering the radiometric integrity of the details in TM bands through the fusion process. Moreover, predominant lineaments directions trending NE-SW, NS, and NW-SE were identified. Results of this study highlighted the importance of the PALSAR FBS L-HH mode and TM data fusion to enhance geological features and lithological units for mineral exploration particularly in tropical zones.展开更多
With the rapid development of technology,geological big data is increasing explosively,and plays an increasingly important position in the national economy(Zhang and Zhou,2017;Zhou et al.,2018).Governments and agencie...With the rapid development of technology,geological big data is increasing explosively,and plays an increasingly important position in the national economy(Zhang and Zhou,2017;Zhou et al.,2018).Governments and agencies attach great importance to the open internet service of geological big data and information at home,and abroad(Yan et al.,2013;Guo et al.,2014).The basic norms of western countries’geological data information services are rich and varied products.展开更多
The key to develop 3-D GISs is the study on 3-D data model and data structure. Some of the data models and data structures have been presented by scholars. Because of the complexity of 3-D spatial phenomenon, there ar...The key to develop 3-D GISs is the study on 3-D data model and data structure. Some of the data models and data structures have been presented by scholars. Because of the complexity of 3-D spatial phenomenon, there are no perfect data structures that can describe all spatial entities. Every data structure has its own advantages and disadvantages. It is difficult to design a single data structure to meet different needs. The important subject in the3-D data models is developing a data model that has integrated vector and raster data structures. A special 3-D spatial data model based on distributing features of spatial entities should be designed. We took the geological exploration engineering as the research background and designed an integrated data model whose data structures integrats vector and raster data byadopting object-oriented technique. Research achievements are presented in this paper.展开更多
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper...The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.展开更多
Presented a study on the design and implementation of spatial data modelingand application in the spatial data organization and management of a coalfield geologicalenvironment database.Based on analysis of a number of...Presented a study on the design and implementation of spatial data modelingand application in the spatial data organization and management of a coalfield geologicalenvironment database.Based on analysis of a number of existing data models and takinginto account the unique data structure and characteristic, methodology and key techniquesin the object-oriented spatial data modeling were proposed for the coalfield geological environment.The model building process was developed using object-oriented technologyand the Unified Modeling Language (UML) on the platform of ESRI geodatabase datamodels.A case study of spatial data modeling in UML was presented with successful implementationin the spatial database of the coalfield geological environment.The modelbuilding and implementation provided an effective way of representing the complexity andspecificity of coalfield geological environment spatial data and an integrated managementof spatial and property data.展开更多
The South China Sea locates at the convergence center of the Eurasian Plate,the Pacific Plate and the Indo-Australia plate. The Cenozoic seafloor spreading in the South China Sea Basin is an important part of the tect...The South China Sea locates at the convergence center of the Eurasian Plate,the Pacific Plate and the Indo-Australia plate. The Cenozoic seafloor spreading in the South China Sea Basin is an important part of the tectonic evolution of the South China Sea that records information of the continental margin tectonic history and its impact on regional geologic evolution. Magnetic data contains abundant geological structure information from the surface to deep. This paper reports magnetic data of the South China Sea. Through the conventional processing of these magnetic data,we report general results on the regional magnetic anomalies,such as the upward continuation graph,the polar magnetic anomaly map and the magnetic anomaly partition map. The magnetic anomaly field in the South China Sea is divided into eight areas,of which the characteristics are explained,and the tectonic evolution of the South China Sea is preliminarily discussed.展开更多
The basis of accurate mineral resource estimates is to have a geological model which replicates the nature and style of the orebody. Key inputs into the generation of a good geological model are the sample data and ma...The basis of accurate mineral resource estimates is to have a geological model which replicates the nature and style of the orebody. Key inputs into the generation of a good geological model are the sample data and mapping information. The Obuasi Mine sample data with a lot of legacy issues were subjected to a robust validation process and integrated with mapping information to generate an accurate geological orebody model for mineral resource estimation in Block 8 Lower. Validation of the sample data focused on replacing missing collar coordinates, missing assays, and correcting magnetic declination that was used to convert the downhole surveys from true to magnetic, fix missing lithology and finally assign confidence numbers to all the sample data. The missing coordinates which were replaced ensured that the sample data plotted at their correct location in space as intended from the planning stage. Magnetic declination data, which was maintained constant throughout all the years even though it changes every year, was also corrected in the validation project. The corrected magnetic declination ensured that the drillholes were plotted on their accurate trajectory as per the planned azimuth and also reflected the true position of the intercepted mineralized fissure(s) which was previously not the case and marked a major blot in the modelling of the Obuasi orebody. The incorporation of mapped data with the validated sample data in the wireframes resulted in a better interpretation of the orebody. The updated mineral resource generated by domaining quartz from the sulphides and compared with the old resource showed that the sulphide tonnes in the old resource estimates were overestimated by 1% and the grade overestimated by 8.5%.展开更多
This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the fle...This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the flexibility necessary to honor constraints such as well data.Compared with existing geostatistics-based modeling methods,our approach produces realistic subsurface facies architecture in 3D using a state-of-the-art deep learning method called generative adversarial networks(GANs).GANs couple a generator with a discriminator,and each uses a deep convolutional neural network.The networks are trained in an adversarial manner until the generator can create "fake" images that the discriminator cannot distinguish from "real" images.We extend the original GAN approach to 3D geological modeling at the reservoir scale.The GANs are trained using a library of 3D facies models.Once the GANs have been trained,they can generate a variety of geologically realistic facies models constrained by well data interpretations.This geomodelling approach using GANs has been tested on models of both complex fluvial depositional systems and carbonate reservoirs that exhibit progradational and aggradational trends.The results demonstrate that this deep learning-driven modeling approach can capture more realistic facies architectures and associations than existing geostatistical modeling methods,which often fail to reproduce heterogeneous nonstationary sedimentary facies with apparent depositional trend.展开更多
基金supported by the National Key R&D Program of China(2019YFC1510700)the Sichuan Science and Technology Program(2023YFS0380, 2023YFS0377, 2019YFG0460, 2022YFS0539)。
文摘With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.
文摘Geological hazard is an adverse geological condition that can cause loss of life and property.Accurate prediction and analysis of geological hazards is an important and challenging task.In the past decade,there has been a great expansion of geohazard detection data and advancement in data-driven simulation techniques.In particular,great efforts have been made in applying deep learning to predict geohazards.To understand the recent progress in this field,this paper provides an overview of the commonly used data sources and deep neural networks in the prediction of a variety of geological hazards.
文摘After long-term development, mathematical geology has today become an independent discipline. Big Data science, which has become a new scientific paradigm in the 21st century, gives rise to the geological Big Data, i.e. mathematical geology and quantitative geoscience. Thanks to a robust macro strategy for big data, China's quantitative geoscience and geological big data's rapid development meets present requirements and has kept up with international levels. This paper presents China's decade-long achievements in quantitative prediction and assessment of mineral resources, geoscience information and software systems, geological information platform development, etc., with an emphasis on application of geological big data in informatics, quantitative mineral prediction, geological environment and disaster management, digital land survey, digital city, etc. Looking ahead, mathematical geology is moving towards "Digital Geology", "Digital Land" and "Geological Cloud", eventually realizing China's grand "Digital China" blueprint, and these valuable results will be showcased on the international academic arena.
基金Supported by the National Natural Science Foundation of China(No.51379006 and No.51009106)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-12-0404)the National Basic Research Program of China("973"Program,No.2013CB035903)
文摘Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.
文摘MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical, geochemical and remote sensing data. It overlays geological database management, geological background and geological abnormality analysis, image processing of remote sensing and comprehensive abnormality analysis, etc.. It puts forward an integrative solution for the application of GIS in basic-level units and the construction of information engineering in the geological field. As the popularization of computer networks and the request of data sharing, it is necessary to extend its functions in data management so that all its data files can be accessed in the network server. This paper utilizes some MAPGIS functions for the second development and ADO (access data object) technique to access multi-source geological data in SQL Server databases. Then remote visiting and congruous management will be realized in the MORPAS system.
文摘This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it introduces the R/S analysis for time series analysis into spacial series to calculate the structural fractal dimensions of ranges and standard deviation for spacial series data -and to establish the fractal dimension matrix and the procedures in plotting the fractal dimension anomaly diagram with vector distances of fractal dimension . At last , it has examples of its application .
文摘Data warehouse (DW), a new technology invented in 1990s, is more useful for integrating and analyzing massive data than traditional database. Its application in geology field can be divided into 3 phrases: 1992-1996, commercial data warehouse (CDW) appeared; 1996-1999, geological data warehouse (GDW) appeared and the geologists or geographers realized the importance of DW and began the studies on it, but the practical DW still followed the framework of DB; 2000 to present, geological data warehouse grows, and the theory of geo-spatial data warehouse (GSDW) has been developed but the research in geological area is still deficient except that in geography. Although some developments of GDW have been made, its core still follows the CDW-organizing data by time and brings about 3 problems: difficult to integrate the geological data, for the data feature more space than time; hard to store the massive data in different levels due to the same reason; hardly support the spatial analysis if the data are organized by time as CDW does. So the GDW should be redesigned by organizing data by scale in order to store mass data in different levels and synthesize the data in different granularities, and choosing space control points to replace the former time control points so as to integrate different types of data by the method of storing one type data as one layer and then to superpose the layers. In addition, data cube, a wide used technology in CDW, will be no use in GDW, for the causality among the geological data is not so obvious as commercial data, as the data are the mixed result of many complex rules, and their analysis always needs the special geological methods and software; on the other hand, data cube for mass and complex geo-data will devour too much store space to be practical. On this point, the main purpose of GDW may be fit for data integration unlike CDW for data analysis.
文摘The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luanchuan,the case study area,southwestern Henan Province,is an important molybdenum-tungsten -lead-zinc polymetallic belt in China.
文摘’Long tail’data is the difficult-to-get-at data that sits in libraries,institutes and on the computers of individual scientists.Informatics specialists like to contrast it with the smaller number of large,more accessible data sets(e.g.Sinha et al.,2013).The name’long tail’derives from graphs drawn of the size of data sets against their number:there are relatively few large datasets and a lot of smaller ones.
基金This paper is financially supported by the National I mportant MiningZone Database ( No .200210000004)Prediction and Assessment ofMineral Resources and Social Service (No .1212010331402) .
文摘Geo-data is a foundation for the prediction and assessment of ore resources, so managing and making full use of those data, including geography database, geology database, mineral deposits database, aeromagnetics database, gravity database, geochemistry database and remote sensing database, is very significant. We developed national important mining zone database (NIMZDB) to manage 14 national important mining zone databases to support a new round prediction of ore deposit. We found that attention should be paid to the following issues: ① data accuracy: integrity, logic consistency, attribute, spatial and time accuracy; ② management of both attribute and spatial data in the same system;③ transforming data between MapGIS and ArcGIS; ④ data sharing and security; ⑤ data searches that can query both attribute and spatial data. Accuracy of input data is guaranteed and the search, analysis and translation of data between MapGIS and ArcGIS has been made convenient via the development of a checking data module and a managing data module based on MapGIS and ArcGIS. Using AreSDE, we based data sharing on a client/server system, and attribute and spatial data are also managed in the same system.
基金funded by China Geological Survey (grant no.1212011120899)the Department of Geology & Mining, China National Nuclear Corporation (grant no.201498)
文摘Hyperspectral remote sensing is now a frontier of the remote sensing technology. Airborne hyperspectral remote sensing data have hundreds of narrow bands to obtain complete and continuous ground-object spectra. Therefore, they can be effectively used to identify these grotmd objects which are difficult to discriminate by using wide-band data, and show much promise in geological survey. At the height of 1500 m, have 36 bands in visible to the CASI hyperspectral data near-infrared spectral range, with a spectral resolution of 19 nm and a space resolution of 0.9 m. The SASI data have 101 bands in the shortwave infrared spectral range, with a spectral resolution of 15 nm and a space resolution of 2.25 m. In 2010, China Geological Survey deployed an airborne CASI/SASI hyperspectral measurement project, and selected the Liuyuan and Fangshankou areas in the Beishan metallogenic belt of Gansu Province, and the Nachitai area of East Kunlun metallogenic belt in Qinghai Province to conduct geological survey. The work period of this project was three years.
文摘Characterized by lithological diversity and rich mineral resources, Benshangul-Gumuz National Regional State located in Asosa Zones, Western Ethiopia has been investigated for geological mapping and morpho-structural lineaments extraction using PALSAR (Phased Array type L-band Synthetic Aperture Radar ) Fine Beam Single (FBS) L-HH polarization and Landsat-5 TM (Thematic Mapper ) datasets. These data were preprocessed to retrieve ground surface reflectance and backscatter coefficients. To overcome the geometry acquisition between the two sensors, they were geometrically and topographically rectified using ASTER-V2 DEM. Intensity-Hue-Saturation, directional filters and automatic lineaments extraction were applied on the datasets for lithological units’ discrimination and structural delimitation for potential mineral exploration. The obtained results showed good relationship among the topographic morphology, rock-substrate, structural variations properties, and drainage network. The spectral variations were easily associated with lithological units. Likewise, the morpho-structural information highlighted in the PALSAR image was visible without altering the radiometric integrity of the details in TM bands through the fusion process. Moreover, predominant lineaments directions trending NE-SW, NS, and NW-SE were identified. Results of this study highlighted the importance of the PALSAR FBS L-HH mode and TM data fusion to enhance geological features and lithological units for mineral exploration particularly in tropical zones.
基金granted by the National Key R&D Program of China(Grant No.2016YFC0600510)the Ministry of Land and Resources"Twelfth Five-Year Plan"Key Projects(Grant No.1212011220352).
文摘With the rapid development of technology,geological big data is increasing explosively,and plays an increasingly important position in the national economy(Zhang and Zhou,2017;Zhou et al.,2018).Governments and agencies attach great importance to the open internet service of geological big data and information at home,and abroad(Yan et al.,2013;Guo et al.,2014).The basic norms of western countries’geological data information services are rich and varied products.
基金Project supported by the National Outstanding Youth Researchers Foundation (No.49525101)the Opening Research Foundation from LIESMARS(WKL(96)0302)
文摘The key to develop 3-D GISs is the study on 3-D data model and data structure. Some of the data models and data structures have been presented by scholars. Because of the complexity of 3-D spatial phenomenon, there are no perfect data structures that can describe all spatial entities. Every data structure has its own advantages and disadvantages. It is difficult to design a single data structure to meet different needs. The important subject in the3-D data models is developing a data model that has integrated vector and raster data structures. A special 3-D spatial data model based on distributing features of spatial entities should be designed. We took the geological exploration engineering as the research background and designed an integrated data model whose data structures integrats vector and raster data byadopting object-oriented technique. Research achievements are presented in this paper.
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
文摘The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.
基金Supported by the Natural Science Foundation of Shanxi Province(2008011028-2)
文摘Presented a study on the design and implementation of spatial data modelingand application in the spatial data organization and management of a coalfield geologicalenvironment database.Based on analysis of a number of existing data models and takinginto account the unique data structure and characteristic, methodology and key techniquesin the object-oriented spatial data modeling were proposed for the coalfield geological environment.The model building process was developed using object-oriented technologyand the Unified Modeling Language (UML) on the platform of ESRI geodatabase datamodels.A case study of spatial data modeling in UML was presented with successful implementationin the spatial database of the coalfield geological environment.The modelbuilding and implementation provided an effective way of representing the complexity andspecificity of coalfield geological environment spatial data and an integrated managementof spatial and property data.
文摘The South China Sea locates at the convergence center of the Eurasian Plate,the Pacific Plate and the Indo-Australia plate. The Cenozoic seafloor spreading in the South China Sea Basin is an important part of the tectonic evolution of the South China Sea that records information of the continental margin tectonic history and its impact on regional geologic evolution. Magnetic data contains abundant geological structure information from the surface to deep. This paper reports magnetic data of the South China Sea. Through the conventional processing of these magnetic data,we report general results on the regional magnetic anomalies,such as the upward continuation graph,the polar magnetic anomaly map and the magnetic anomaly partition map. The magnetic anomaly field in the South China Sea is divided into eight areas,of which the characteristics are explained,and the tectonic evolution of the South China Sea is preliminarily discussed.
文摘The basis of accurate mineral resource estimates is to have a geological model which replicates the nature and style of the orebody. Key inputs into the generation of a good geological model are the sample data and mapping information. The Obuasi Mine sample data with a lot of legacy issues were subjected to a robust validation process and integrated with mapping information to generate an accurate geological orebody model for mineral resource estimation in Block 8 Lower. Validation of the sample data focused on replacing missing collar coordinates, missing assays, and correcting magnetic declination that was used to convert the downhole surveys from true to magnetic, fix missing lithology and finally assign confidence numbers to all the sample data. The missing coordinates which were replaced ensured that the sample data plotted at their correct location in space as intended from the planning stage. Magnetic declination data, which was maintained constant throughout all the years even though it changes every year, was also corrected in the validation project. The corrected magnetic declination ensured that the drillholes were plotted on their accurate trajectory as per the planned azimuth and also reflected the true position of the intercepted mineralized fissure(s) which was previously not the case and marked a major blot in the modelling of the Obuasi orebody. The incorporation of mapped data with the validated sample data in the wireframes resulted in a better interpretation of the orebody. The updated mineral resource generated by domaining quartz from the sulphides and compared with the old resource showed that the sulphide tonnes in the old resource estimates were overestimated by 1% and the grade overestimated by 8.5%.
文摘This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the flexibility necessary to honor constraints such as well data.Compared with existing geostatistics-based modeling methods,our approach produces realistic subsurface facies architecture in 3D using a state-of-the-art deep learning method called generative adversarial networks(GANs).GANs couple a generator with a discriminator,and each uses a deep convolutional neural network.The networks are trained in an adversarial manner until the generator can create "fake" images that the discriminator cannot distinguish from "real" images.We extend the original GAN approach to 3D geological modeling at the reservoir scale.The GANs are trained using a library of 3D facies models.Once the GANs have been trained,they can generate a variety of geologically realistic facies models constrained by well data interpretations.This geomodelling approach using GANs has been tested on models of both complex fluvial depositional systems and carbonate reservoirs that exhibit progradational and aggradational trends.The results demonstrate that this deep learning-driven modeling approach can capture more realistic facies architectures and associations than existing geostatistical modeling methods,which often fail to reproduce heterogeneous nonstationary sedimentary facies with apparent depositional trend.