期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
D-SS Frame:deep spectral-spatial feature extraction and fusion for classification of panchromatic and multispectral images 被引量:2
1
作者 Teffahi Hanane Yao Hongxun 《High Technology Letters》 EI CAS 2018年第4期378-386,共9页
Facing the very high-resolution( VHR) image classification problem,a feature extraction and fusion framework is presented for VHR panchromatic and multispectral image classification based on deep learning techniques. ... Facing the very high-resolution( VHR) image classification problem,a feature extraction and fusion framework is presented for VHR panchromatic and multispectral image classification based on deep learning techniques. The proposed approach combines spectral and spatial information based on the fusion of features extracted from panchromatic( PAN) and multispectral( MS) images using sparse autoencoder and its deep version. There are three steps in the proposed method,the first one is to extract spatial information of PAN image,and the second one is to describe spectral information of MS image. Finally,in the third step,the features obtained from PAN and MS images are concatenated directly as a simple fusion feature. The classification is performed using the support vector machine( SVM) and the experiments carried out on two datasets with very high spatial resolution. MS and PAN images from WorldView-2 satellite indicate that the classifier provides an efficient solution and demonstrate that the fusion of the features extracted by deep learning techniques from PAN and MS images performs better than that when these techniques are used separately. In addition,this framework shows that deep learning models can extract and fuse spatial and spectral information greatly,and have huge potential to achieve higher accuracy for classification of multispectral and panchromatic images. 展开更多
关键词 IMAGE classification FEATURE extraction(FE) FEATURE FUSION SPARSE autoencoder stacked SPARSE autoencoder support vector machine(SVM) multispectral(MS)image panchromatic(PAN)image
下载PDF
Fusion of multispectral image and panchromatic image based on NSCT and NMF 被引量:4
2
作者 吴一全 吴超 吴诗婳 《Journal of Beijing Institute of Technology》 EI CAS 2012年第3期415-420,共6页
A novel fusion method of multispectral image and panchromatic image based on nonsubsampled contourlet transform(NSCT) and non-negative matrix factorization(NMF) is presented,the aim of which is to preserve both sp... A novel fusion method of multispectral image and panchromatic image based on nonsubsampled contourlet transform(NSCT) and non-negative matrix factorization(NMF) is presented,the aim of which is to preserve both spectral and spatial information simultaneously in fused image.NMF is a matrix factorization method,which can extract the local feature by choosing suitable dimension of the feature subspace.Firstly the multispectral image was represented in intensity hue saturation(IHS) system.Then the I component and panchromatic image were decomposed by NSCT.Next we used NMF to learn the feature of both multispectral and panchromatic images' low-frequency subbands,and the selection principle of the other coefficients was absolute maximum criterion.Finally the new coefficients were reconstructed to get the fused image.Experiments are carried out and the results are compared with some other methods,which show that the new method performs better in improving the spatial resolution and preserving the feature information than the other existing relative methods. 展开更多
关键词 image fusion multispectral sensing image panchromatic image nousubsampled contourlet transform(NSCT) non-negative matrix factorization(NMF)
下载PDF
MULTI-SOURCE REMOTE SENSING IMAGE FUSION BASED ON SUPPORT VECTOR MACHINE 被引量:3
3
作者 ZHAOShu-he FENGXue-zhi 《Chinese Geographical Science》 SCIE CSCD 2002年第3期244-248,共5页
Remote Sensing image fusion is an effective way to use the large volume ofdata from multi-source images. This paper introduces a new method of remote sensing image fusionbased on support vector machine (SVM), using hi... Remote Sensing image fusion is an effective way to use the large volume ofdata from multi-source images. This paper introduces a new method of remote sensing image fusionbased on support vector machine (SVM), using high spatial resolution data SPIN-2 and multi-spectralremote sensing data SPOT-4. Firstly, the new method is established by building a model of remotesensing image fusion based on SVM. Then by using SPIN-2 data and SPOT-4 data, image classificationfusion is tested. Finally, an evaluation of the fusion result is made in two ways. 1) Fromsubjectivity assessment, the spatial resolution of the fused image is improved compared to theSPOT-4. And it is clearly that the texture of the fused image is distinctive. 2) From quantitativeanalysis, the effect of classification fusion is better. As a whole, the re-suit shows that theaccuracy of image fusion based on SVM is high and the SVM algorithm can be recommended forapplication in remote sensing image fusion processes. 展开更多
关键词 image fusion SVM multi-spectral image panchromatic image
下载PDF
Joint AIHS and Particle Swarm Optimization for Pan-sharpening
4
作者 Yingxia CHEN Yan CHEN Cong LIU 《Journal of Geodesy and Geoinformation Science》 2020年第2期105-113,共9页
Pan-sharpening is a process of obtaining a high spatial and spectral multispectral image(HMS)by combining a low-resolution multispectral image(LMS)with a high-resolution panchromatic image(PAN).In this paper,a pan-sha... Pan-sharpening is a process of obtaining a high spatial and spectral multispectral image(HMS)by combining a low-resolution multispectral image(LMS)with a high-resolution panchromatic image(PAN).In this paper,a pan-sharpening method called PAIHS is proposed,which is based on adaptive intensity-hue-saturation(AIHS)transformation,variational pan-sharpening framework and the two fidelity hypotheses.The suitable objective function is established and optimized by adopting particle swarm optimization(PSO)to obtain the optimal control parameters and minimum value.This value corresponds to the best pan-sharpening quality.The experimental results show that the proposed method has high efficiency and reliability,and the obtained performance index is superior to the four mainstream pan-sharpening methods. 展开更多
关键词 pan-sharpening multispectral image panchromatic image AIHS transformation particle swarm optimization objective function
下载PDF
Fusion of Remote Sensing Images Based on Nonsubsampled Contourlet Transform and Region Segmentation
5
作者 吴一全 吴超 吴诗婳 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第6期722-727,共6页
The purpose of remote sensing images fusion is to produce a fused image that contains more clear,accurate and comprehensive information than any single image.A novel fusion method is proposed in this paper based on no... The purpose of remote sensing images fusion is to produce a fused image that contains more clear,accurate and comprehensive information than any single image.A novel fusion method is proposed in this paper based on nonsubsampled contourlet transform(NSCT) and region segmentation.Firstly,the multispectral image is transformed to intensity-hue-saturation(IHS) system.Secondly,the panchromatic image and the component intensity of the multispectral image are decomposed by NSCT.Then the NSCT coefficients of high and low frequency subbands are fused by different rules,respectively.For the high frequency subbands,the fusion rules are also unalike in the smooth and edge regions.The two regions are segregated in the panchromatic image,and the segmentation is based on particle swarm optimization.Finally,the fusion image can be obtained by performing inverse NSCT and inverse IHS transform.The experimental results are evaluated by both subjective and objective criteria.It is shown that the proposed method can obtain superior results to others. 展开更多
关键词 image fusion multispectral remote sensing image panchromatic image nonsubsampled contourlet transform(NSCT) particle swarm optimization(PSO)
原文传递
TLS-bridged co-prediction of tree-level multifarious stem structure variables from worldview-2 panchromatic imagery: a case study of the boreal forest
6
作者 Yi Lin Tian Wei +7 位作者 Bin Yang Yuri Knyazikhin Yuhu Zhang Hisashi Sato Xing Fang Xinlian Liang Lei Yan Shanlin Sun 《International Journal of Digital Earth》 SCIE EI 2017年第7期701-718,共18页
In forest ecosystem studies,tree stem structure variables(SSVs)proved to be an essential kind of parameters,and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing ... In forest ecosystem studies,tree stem structure variables(SSVs)proved to be an essential kind of parameters,and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing the frontier studies on marcoecosystem ecology and global carbon cycle.For this newly emerging task,satellite imagery such as WorldView-2 panchromatic images(WPIs)is used as a potential solution for co-prediction of tree-level multifarious SSVs,with static terrestrial laser scanning(TLS)assumed as a‘bridge’.The specific operation is to pursue the allometric relationships between TLS-derived SSVs and WPI-derived feature parameters,and regression analyses with one or multiple explanatory variables are applied to deduce the prediction models(termed as Model1s and Model2s).In the case of Picea abies,Pinus sylvestris,Populus tremul and Quercus robur in a boreal forest,tests showed that Model1s and Model2s for different tree species can be derived(e.g.the maximum R^(2)=0.574 for Q.robur).Overall,this study basically validated the algorithm proposed for co-prediction of multifarious SSVs,and the contribution is equivalent to developing a viable solution for SSV-estimation upscaling,which is useful for large-scale investigations of forest understory,macroecosystem ecology,global vegetation dynamics and global carbon cycle. 展开更多
关键词 Tree stem structure variable(SSV) WorldView-2 panchromatic image(WPI) static terrestrial laser scanning(TLS) allometric relationship co-prediction model
原文传递
Multi-spectral image fusion method based on two channels non-separable wavelets 被引量:9
7
作者 LIU Bin1,2 & PENG JiaXiong3 1 School of Mathematics and Computer Science, Hubei University, Wuhan 430062, China 2 Key Laboratory of Applied Mathematics of Hubei Province, Wuhan 430062, China 3 Institute of Image Recognition and Artificial Intelligence, Huazhong University of Science and Technology, Wuhan 430074, China 《Science in China(Series F)》 2008年第12期2022-2032,共11页
A construction method of two channels non-separable wavelets filter bank which dilation matrix is [1, 1; 1,-1] and its application in the fusion of multi-spectral image are presented. Many 4×4 filter banks are de... A construction method of two channels non-separable wavelets filter bank which dilation matrix is [1, 1; 1,-1] and its application in the fusion of multi-spectral image are presented. Many 4×4 filter banks are designed. The multi-spectral image fusion algorithm based on this kind of wavelet is proposed. Using this filter bank, multi-resolution wavelet decomposition of the intensity of multi-spectral image and panchromatic image is performed, and the two low-frequency components of the intensity and the panchromatic image are merged by using a tradeoff parameter. The experiment results show that this method is good in the preservation of spectral quality and high spatial resolution information. Its performance in preserving spectral quality and high spatial information is better than the fusion method based on DWFT and IHS. When the parameter t is closed to 1, the fused image can obtain rich spectral information from the original MS image. The amount of computation reduced to only half of the fusion method based on four channels wavelet transform. 展开更多
关键词 image fusion non-separable wavelets multi-spectral image panchromatic image
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部