As the pancreas only occupies a small region in the whole abdominal computed tomography(CT)scans and has high variability in shape,location and size,deep neural networks in automatic pancreas segmentation task can be ...As the pancreas only occupies a small region in the whole abdominal computed tomography(CT)scans and has high variability in shape,location and size,deep neural networks in automatic pancreas segmentation task can be easily confused by the complex and variable background.To alleviate these issues,this paper proposes a novel pancreas segmentation optimization based on the coarse-to-fine structure,in which the coarse stage is responsible for increasing the proportion of the target region in the input image through the minimum bounding box,and the fine is for improving the accuracy of pancreas segmentation by enhancing the data diversity and by introducing a new segmentation model,and reducing the running time by adding a total weights constraint.This optimization is evaluated on the public pancreas segmentation dataset and achieves 87.87%average Dice-Sørensen coefficient(DSC)accuracy,which is 0.94%higher than 86.93%,result of the state-of-the-art pancreas segmentation methods.Moreover,this method has strong generalization that it can be easily applied to other coarse-to-fine or one step organ segmentation tasks.展开更多
Accurate pancreas segmentation is critical for the diagnosis and management of diseases of the pancreas. It is challenging to precisely delineate pancreas due to the highly variations in volume, shape and location. In...Accurate pancreas segmentation is critical for the diagnosis and management of diseases of the pancreas. It is challenging to precisely delineate pancreas due to the highly variations in volume, shape and location. In recent years, coarse-to-fine methods have been widely used to alleviate class imbalance issue and improve pancreas segmentation accuracy. However,cascaded methods could be computationally intensive and the refined results are significantly dependent on the performance of its coarse segmentation results. To balance the segmentation accuracy and computational efficiency, we propose a Discriminative Feature Attention Network for pancreas segmentation, to effectively highlight pancreas features and improve segmentation accuracy without explicit pancreas location. The final segmentation is obtained by applying a simple yet effective post-processing step. Two experiments on both public NIH pancreas CT dataset and abdominal BTCV multi-organ dataset are individually conducted to show the effectiveness of our method for 2 D pancreas segmentation. We obtained average Dice Similarity Coefficient(DSC) of 82.82±6.09%, average Jaccard Index(JI) of 71.13± 8.30% and average Symmetric Average Surface Distance(ASD) of 1.69 ± 0.83 mm on the NIH dataset. Compared to the existing deep learning-based pancreas segmentation methods, our experimental results achieve the best average DSC and JI value.展开更多
基金supported by the National Natural Science Foundation of China[61772242,61976106,61572239]the China Postdoctoral Science Foundation[2017M611737]+3 种基金the Six Talent Peaks Project in Jiangsu Province[DZXX-122]the Jiangsu Province EmergencyManagement Science and Technology Project[YJGL-TG-2020-8]the Key Research and Development Plan of Zhenjiang City[SH2020011]Postgraduate Innovation Fund of Jiangsu Province[KYCX18_2257].
文摘As the pancreas only occupies a small region in the whole abdominal computed tomography(CT)scans and has high variability in shape,location and size,deep neural networks in automatic pancreas segmentation task can be easily confused by the complex and variable background.To alleviate these issues,this paper proposes a novel pancreas segmentation optimization based on the coarse-to-fine structure,in which the coarse stage is responsible for increasing the proportion of the target region in the input image through the minimum bounding box,and the fine is for improving the accuracy of pancreas segmentation by enhancing the data diversity and by introducing a new segmentation model,and reducing the running time by adding a total weights constraint.This optimization is evaluated on the public pancreas segmentation dataset and achieves 87.87%average Dice-Sørensen coefficient(DSC)accuracy,which is 0.94%higher than 86.93%,result of the state-of-the-art pancreas segmentation methods.Moreover,this method has strong generalization that it can be easily applied to other coarse-to-fine or one step organ segmentation tasks.
基金Supported by the Ph.D. Research Startup Project of Minnan Normal University(KJ2021020)the National Natural Science Foundation of China(12090020 and 12090025)Zhejiang Provincial Natural Science Foundation of China(LSD19H180005)。
文摘Accurate pancreas segmentation is critical for the diagnosis and management of diseases of the pancreas. It is challenging to precisely delineate pancreas due to the highly variations in volume, shape and location. In recent years, coarse-to-fine methods have been widely used to alleviate class imbalance issue and improve pancreas segmentation accuracy. However,cascaded methods could be computationally intensive and the refined results are significantly dependent on the performance of its coarse segmentation results. To balance the segmentation accuracy and computational efficiency, we propose a Discriminative Feature Attention Network for pancreas segmentation, to effectively highlight pancreas features and improve segmentation accuracy without explicit pancreas location. The final segmentation is obtained by applying a simple yet effective post-processing step. Two experiments on both public NIH pancreas CT dataset and abdominal BTCV multi-organ dataset are individually conducted to show the effectiveness of our method for 2 D pancreas segmentation. We obtained average Dice Similarity Coefficient(DSC) of 82.82±6.09%, average Jaccard Index(JI) of 71.13± 8.30% and average Symmetric Average Surface Distance(ASD) of 1.69 ± 0.83 mm on the NIH dataset. Compared to the existing deep learning-based pancreas segmentation methods, our experimental results achieve the best average DSC and JI value.