期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pancreas Segmentation Optimization Based on Coarse-to-Fine Scheme
1
作者 Xu Yao Chengjian Qiu +1 位作者 Yuqing Song Zhe Liu 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2583-2594,共12页
As the pancreas only occupies a small region in the whole abdominal computed tomography(CT)scans and has high variability in shape,location and size,deep neural networks in automatic pancreas segmentation task can be ... As the pancreas only occupies a small region in the whole abdominal computed tomography(CT)scans and has high variability in shape,location and size,deep neural networks in automatic pancreas segmentation task can be easily confused by the complex and variable background.To alleviate these issues,this paper proposes a novel pancreas segmentation optimization based on the coarse-to-fine structure,in which the coarse stage is responsible for increasing the proportion of the target region in the input image through the minimum bounding box,and the fine is for improving the accuracy of pancreas segmentation by enhancing the data diversity and by introducing a new segmentation model,and reducing the running time by adding a total weights constraint.This optimization is evaluated on the public pancreas segmentation dataset and achieves 87.87%average Dice-Sørensen coefficient(DSC)accuracy,which is 0.94%higher than 86.93%,result of the state-of-the-art pancreas segmentation methods.Moreover,this method has strong generalization that it can be easily applied to other coarse-to-fine or one step organ segmentation tasks. 展开更多
关键词 pancreas segmentation coarse-to-fine U-net constraint loss function
下载PDF
Learning a Discriminative Feature Attention Network for pancreas CT segmentation
2
作者 HUANG Mei-xiang WANG Yuan-jin +2 位作者 HUANG Chong-fei YUAN Jing KONG De-xing 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第1期73-90,共18页
Accurate pancreas segmentation is critical for the diagnosis and management of diseases of the pancreas. It is challenging to precisely delineate pancreas due to the highly variations in volume, shape and location. In... Accurate pancreas segmentation is critical for the diagnosis and management of diseases of the pancreas. It is challenging to precisely delineate pancreas due to the highly variations in volume, shape and location. In recent years, coarse-to-fine methods have been widely used to alleviate class imbalance issue and improve pancreas segmentation accuracy. However,cascaded methods could be computationally intensive and the refined results are significantly dependent on the performance of its coarse segmentation results. To balance the segmentation accuracy and computational efficiency, we propose a Discriminative Feature Attention Network for pancreas segmentation, to effectively highlight pancreas features and improve segmentation accuracy without explicit pancreas location. The final segmentation is obtained by applying a simple yet effective post-processing step. Two experiments on both public NIH pancreas CT dataset and abdominal BTCV multi-organ dataset are individually conducted to show the effectiveness of our method for 2 D pancreas segmentation. We obtained average Dice Similarity Coefficient(DSC) of 82.82±6.09%, average Jaccard Index(JI) of 71.13± 8.30% and average Symmetric Average Surface Distance(ASD) of 1.69 ± 0.83 mm on the NIH dataset. Compared to the existing deep learning-based pancreas segmentation methods, our experimental results achieve the best average DSC and JI value. 展开更多
关键词 attention mechanism Discriminative Feature Attention Network Improved Refinement Residual Block pancreas CT segmentation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部