期刊文献+
共找到4,738篇文章
< 1 2 237 >
每页显示 20 50 100
Impact of Cattaneo-Christov Heat Flux in the Nanofluid Flow over an Inclined Permeable Surface with Irreversibility Analysis
1
作者 Muhammad Ramzan Hina Gul 《Journal of Applied Mathematics and Physics》 2024年第4期1582-1595,共14页
This study discusses the magnetohydrodynamic nanofluid flow over an inclined permeable surface influenced by mixed convection, and Cattaeo-Christov heat flux. The heat transfer analysis is performed in the presence of... This study discusses the magnetohydrodynamic nanofluid flow over an inclined permeable surface influenced by mixed convection, and Cattaeo-Christov heat flux. The heat transfer analysis is performed in the presence of a heat source/sink and thermal stratification. To gauge the energy loss during the process, an irreversibility analysis is also performed. A numerical solution to the envisaged problem is obtained using the bvp4c package of MATLAB. Graphs are drawn to assess the consequences of the arising parameters against the associated profiles. The results show that an augmentation in the magnetic field and nanomaterial volume fraction results in an enhancement in the temperature profile. A strong magnetic field can significantly reduce the fluid velocity. The behavior of the Skin friction coefficient against the different estimates of emerging parameters is discussed. . 展开更多
关键词 Nanofluid Flow Cattaneo-Christov heat Flux Permeable surface Mixed Convection heat Source/Sink Thermal Stratification
下载PDF
Effects of surface heating on precipitation over the Tibetan Plateau and its eastern margin
2
作者 MaoShan Li YuChen Liu +4 位作者 Zhao Lv YongHao Jiang Pei Xu YaoMing Ma FangLin Sun 《Research in Cold and Arid Regions》 CSCD 2023年第5期230-238,共9页
The high terrain of the Tibetan Plateau(TP)has a very important impact on the weather and climate of China,East Asia,South Asia,and even the Northern Hemisphere.However,in recent years,the reasons for the decrease in ... The high terrain of the Tibetan Plateau(TP)has a very important impact on the weather and climate of China,East Asia,South Asia,and even the Northern Hemisphere.However,in recent years,the reasons for the decrease in precipitation in the southeastern edge of the plateau have resulted in cutting-edge research regarding the impact of the TP and its surrounding areas on downstream weather and climate.In this study,the spatial and temporal distribution of surface heat flux and precipitation were analyzed from 1998 to 2022,and the possible mechanism of the decrease of precipitation in the eastern edge of the plateau is explored.The main conclusions are as follows:The annual average sensible heat flux in the TP and its east side is positive,with an average of 33.73 W/m^(2).The annual average latent heat flux is positive,with an average of 42.71 W/m^(2).Precipitation has a similar annual average and seasonal distribution,with modest amounts in the northwest and substantial amounts in the southeast.The average annual accumulated precipitation is 670.69 mm.The first mode of the Empirical Orthogonal Function(EOF)shows that sensible heat flux decreases first,then increases,and then finally decreases during 1998–2022.The modes show the opposite trend in middle part of the plateau.The latent heat flux initially decreases,then increases,and finally decreases in the western plateau and near Sichuan Basin.The mode,however,displays the opposite tendency throughout the rest of the region.The precipitation in the north and south sides of the plateau has decreased since 2013,which is consistent with the changing trend of sensible heat flux.In the rest of the region,the change trend is not obvious.The sensible heat of the main body of the plateau and its east side and Sichuan Basin is negatively correlated with precipitation,that is,when sensible heat flux of the main body of the plateau and its east side and Sichuan Basin is more(less),local precipitation is less(more).The latent heat of the main body of the plateau and its east side,Sichuan Basin is positively correlated with precipitation,indicating that when latent heat flux of the main body of the plateau and its east side,Sichuan Basin is more(less),local precipitation is more(less). 展开更多
关键词 The Tibetan Plateau surface heating PRECIPITATION EOF Singular value decomposition(SVD)
下载PDF
Insight into the dynamics of non-Newtonian Carreau fluid when viscous dissipation,entropy generation,convective heating and diffusion are significant
3
作者 ZHOU Shuang-shuang Muhammad Ijaz Khan +1 位作者 Sami Ullah Khan Sumaira Qayyum 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期34-46,共13页
The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal m... The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal mechanism of magnetized flow.The convective boundary assumptions are directed in order to examine the heat and mass transportation of nanofluid.The thermal concept of thermophoresis and Brownian movements has been re-called with the help of Buongiorno model.The problem formulated in dimensionless form is solved by NDSolve MATHEMATICA.The graphical analysis for parameters governed by the problem is performed with physical applications.The affiliation of entropy generation and Bejan number for different parameters is inspected in detail.The numerical data for illustrating skin friction,heat and mass transfer rate is also reported.The motion of the fluid is highest for the viscosity ratio parameter.The temperature of the fluid rises via thermal Biot number.Entropy generation rises for greater Brinkman number and diffusion parameter. 展开更多
关键词 heat generation surface reaction CNTs based nano uid stretching/shrinking sheet thermal radiation
下载PDF
Numerical study of flow and thermal characteristics of pulsed impinging jet on a dimpled surface
4
作者 Amin Bagheri Kazem Esmailpour Morteza Heydari 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期106-117,共12页
This research comprehensively investigates the flow and thermal characteristics of a pulsating impinging jet over a dimpled surface.It analyzes the impact of key parameters(e.g.,inlet velocity pulsation functions,puls... This research comprehensively investigates the flow and thermal characteristics of a pulsating impinging jet over a dimpled surface.It analyzes the impact of key parameters(e.g.,inlet velocity pulsation functions,pulsation frequency,amplitude,dimple pitch,dimple depth,Reynolds number)on flow patterns and heat transfer.Validated computational fluid dynamics and the Re-normalization group turbulence model are employed to accurately simulate complex turbulent flow behavior.Local and average heat transfer coefficients are calculated and compared to steady impingement cases,revealing the potential benefits of pulsation for heat transfer enhancement.The study also examines how pulsation-induced flow modulation and thermal mixing affect heat transfer mechanisms.Results indicate that combining fluctuating flow with a dimpled surface can improve heat transfer rates.In summary,increasing pulsation amplitude consistently enhances heat transfer,while the effect of frequency varies between impinging and wall jet zones. 展开更多
关键词 Pulsating impinging jet Dimpled surface heat transfer enhancement Pulsation frequency and amplitude Coherent structures
下载PDF
Spatiotemporal dynamics of land use/land cover(LULC)changes and its impact on land surface temperature:A case study in New Town Kolkata,eastern India
5
作者 Bubun MAHATA Siba Sankar SAHU +2 位作者 Archishman SARDAR Laxmikanta RANA Mukul MAITY 《Regional Sustainability》 2024年第2期26-48,共23页
Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land ... Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land cover(LULC)changes on LST and determined the intensity of urban heat island(UHI)in New Town Kolkata(a smart city),eastern India,from 1991 to 2021 at 10-a intervals using various series of Landsat multi-spectral and thermal bands.This study used the maximum likelihood algorithm for image classification and other methods like the correlation analysis and hotspot analysis(Getis–Ord Gi^(*) method)to examine the impact of LULC changes on urban thermal environment.This study noticed that the area percentage of built-up land increased rapidly from 21.91%to 45.63%during 1991–2021,with a maximum positive change in built-up land and a maximum negative change in sparse vegetation.The mean temperature significantly increased during the study period(1991–2021),from 16.31℃to 22.48℃in winter,29.18℃to 34.61℃in summer,and 19.18℃to 27.11℃in autumn.The result showed that impervious surfaces contribute to higher LST,whereas vegetation helps decrease it.Poor ecological status has been found in built-up land,and excellent ecological status has been found in vegetation and water body.The hot spot and cold spot areas shifted their locations every decade due to random LULC changes.Even after New Town Kolkata became a smart city,high LST has been observed.Overall,this study indicated that urbanization and changes in LULC patterns can influence the urban thermal environment,and appropriate planning is needed to reduce LST.This study can help policy-makers create sustainable smart cities. 展开更多
关键词 Urbanization Land use/land cover (LULC)changes Land surface temperature Urban heat island Hotspot analysis Smart city
下载PDF
Variations in Surface Urban Heat Island and Urban Cool Island Intensity:A Review Across Major Climate Zones
6
作者 Muhammad Sadiq KHAN Sami ULLAH CHEN Liding 《Chinese Geographical Science》 SCIE CSCD 2023年第6期983-1000,共18页
The climate has an impact on the urban thermal environment,and the magnitude of the surface urban heat island(SUHI)and urban cool island(UCI)vary across the world’s climatic zones.This literature review investigated:... The climate has an impact on the urban thermal environment,and the magnitude of the surface urban heat island(SUHI)and urban cool island(UCI)vary across the world’s climatic zones.This literature review investigated:1)the variations in the SUHI and UCI intensity under different climatic backgrounds,and 2)the effect of vegetation types,landscape composition,urban configuration,and water bodies on the SUHI.The SUHI had a higher intensity in tropical(Af(tropical rainy climate,Köppen climate classification),Am(tropical monsoon climate),subtropical(Cfa,subtropical humid climate),and humid continental(Dwa,semi-humid and semi-arid monsoon climate)climate zones.The magnitude of the UCI was low compared to the SUHI across the climate zones.The cool and dry Mediterranean(Cfb,temperate marine climate;Csb,temperate mediterranean climate;Cfa)and tropical climate(Af)areas had a higher cooling intensity.For cities with a desert climate(BWh,tropical desert climate),a reverse pattern was found.The difference in the SUHI in the night-time was greater than in the daytime for most cities across the climate zones.The extent of green space cooling was related to city size,the adjacent impervious surface,and the local climate.Additionally,the composition of urban landscape elements was more significant than their configuration for sustaining the urban thermal environment.Finally,we identified future research gaps for possible solutions in the context of sustainable urbanization in different climate zones. 展开更多
关键词 urban heat island intensity(SUHI) urban cool island intensity(UCI) day-night surface urban heat island(SUHI) climate zones landscape composition and configuration sustainable urbanization
下载PDF
Surface Regional Heat(Cool) Island Effect and Its Diurnal Differences in Arid and Semiarid Resource-based Urban Agglomerations
7
作者 CHEN Yan XIE Miaomiao +2 位作者 CHEN Bin WANG Huihui TENG Yali 《Chinese Geographical Science》 SCIE CSCD 2023年第1期131-143,共13页
With the rapid development of urban agglomerations in northwest arid and semiarid regions of China, the scope of the urban heat island(UHI) effect has gradually expanded and gradually connected, and has formed a regio... With the rapid development of urban agglomerations in northwest arid and semiarid regions of China, the scope of the urban heat island(UHI) effect has gradually expanded and gradually connected, and has formed a regional heat island(RHI) with a larger range of impact to the regional environment. However, there are few studies on the heat island effect of urban agglomerations in arid and semiarid regions, so this paper selects the urban agglomeration of Hohhot, Baotou and Ordos(HBO) of Inner Mongolia, China as the study area. Based on the 8-day composite Moderate-resolution Imaging Spectroradiometer(MODIS) surface temperature data(156scenes in all) and land use maps for 2005, 2010, and 2015, we analyze the spatiotemporal distributions of regional heat(cool) islands(RH(C)I) and the responses of surface temperatures to land-use changes in the diurnal and interannual surface cities. The results showed that: 1) from 2005 to 2015, urban areas showed the cold island effect during the day, with the area of the cold island showing a shrinking feature;at night, they showed the heat island effect, with the area of the heat island showing a first decrease and then an increase.2) From 2005 to 2015, the land development(unutilized land to building land) brings the greatest temperature increase(ΔT = 1.36°C)during the day, while the greatest temperature change at night corresponds to the conversion of cultivated land to building land(ΔT =0.78°C) exhibited the largest changes at night. From 2010 to 2015, the land development(grassland to building land) bring the greatest temperature increase(ΔT = 0.85°C) during the day, while the great temperature change at night corresponds to the conversion of water areas to building land(ΔT = 1.38°C) exhibited the largest changes at night. Exploring the spatial and temporal evolution of surface urban heat(cool) islands in urban agglomerations in arid and semiarid regions will help to understand the urbanization characteristics of urban agglomerations and provide a reference for the formulation of policies for the coordinated and healthy development of the region and co-governance of regional environmental problems. 展开更多
关键词 regional heat(cool)island(RH(C)I) urban agglomeration arid and semiarid areas land-use change land surface temperature(LST)
下载PDF
Impact of Surface Sensible Heating over the Tibetan Plateau on the Western Pacific Subtropical High: A Land–Air–Sea Interaction Perspective 被引量:17
8
作者 Anmin DUAN Ruizao SUN Jinhai HE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第2期157-168,共12页
The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated th... The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework. 展开更多
关键词 Tibetan Plateau surface sensible heating western Pacific subtropical high ENSO tropical air-sea interaction
下载PDF
The Regional Surface Heating Field over the Heterogeneous Landscape of the Tibetan Plateau Using MODIS and In Situ Data 被引量:5
9
作者 马耀明 王宾宾 +1 位作者 仲雷 马伟强 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第1期47-53,共7页
In this study, a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape... In this study, a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape. As a case study, the methodology was applied to the whole Tibetan Plateau (TP) area. Four images of MODIS data (i.e., 30 January 2007, 15 April 2007, 1 August 2007, and 25 October 2007) were used in this study for comparison among winter, spring, summer, and autumn. The results were validated using the observations measured at the stations of the Tibetan Observation and Research Platform (TORP). The results show the following: (1) The derived surface heating field for the TP area was in good accord with the land-surface status, showing a wide range of values due to the strong contrast of surface features in the area. (2) The derived surface heating field for the TP was very close to the field measurements (observations). The APD (absolute percent difference) between the derived results and the field observations was 〈10%. (3) The mean surface heating field over the TP increased from January to April to August, and decreased in October. Therefore, the reasonable regional distribution of the surface heating field over a heterogeneous landscape can be obtained using this methodology. The limitations and further improvement of this method are also discussed. 展开更多
关键词 regional surface heating field Tibetan Plateau MODIS in-situ data
下载PDF
Mechanism of unsteady aerodynamic heating with sudden change in surface temperature 被引量:2
10
作者 陈皓 鲍麟 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第2期163-174,共12页
The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is p... The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is presented with both analytical and numerical approaches. With the analytical method, the unsteady compressible boundary layer equation is solved. In the neighborhood of the initial and final steady states, the transient responses can be expressed with a steady-state solution plus a perturbation series. By combining these two solutions, a complete solution in the entire time domain is achieved. In the region in which the analytical approach is applicable, numerical results are in good agreement with the analytical results, showing reliability of the methods. The result shows two distinct features of the unsteady response. In a short period just after a sudden increase in the wall temperature, the direction of the wall heat flux is reverted, and a new inflexion near the wall occurs in the profile of the thermal boundary layer. This is a typical unsteady characteristic. However, these unsteady responses only exist in a very short period in hypersonic flows, meaning that, in a long-term aerodynamic heating process considering only unsteady surface temperature, the unsteady characteristics of the flow can be ignored, and the traditional quasi-steady aerodynamic heating prediction methods are still valid. 展开更多
关键词 unsteady aerodynamic heating HYPERSONIC unsteady surface temperature approximate analysis numerical simulation
下载PDF
Heat Transfer Characteristics of Boiler Convective Heating Surface Under Pressurized Oxygen-fuel Combustion Conditions 被引量:8
11
作者 Gao Zhengyang Xia Ruiqing Yan Weiping Ma Kai Feng Wenhui Zhang Bowen 《中国电机工程学报》 EI CSCD 北大核心 2012年第23期I0001-I0020,142,共20页
增压富氧燃烧是一项极具前景的减排CO2新技术。对增压富氧燃烧条件下,对流受热面换热特性进行研究具有重要的意义。该文以一台实际300MW等级机组煤粉锅炉为计算对象,采用维里方程及Chun等的计算方法计算确定增压富氧燃烧烟气物性,采用... 增压富氧燃烧是一项极具前景的减排CO2新技术。对增压富氧燃烧条件下,对流受热面换热特性进行研究具有重要的意义。该文以一台实际300MW等级机组煤粉锅炉为计算对象,采用维里方程及Chun等的计算方法计算确定增压富氧燃烧烟气物性,采用宽带关联k模型计算富氧燃烧烟气辐射特性。进行了常规空气燃烧以及φ(O2):φ(CO2)=21:79、φ(O2):φ(CO2)=30:70两种比例的0.1、0.5、1.0、1.5、6 MPa五种压力下增压富氧燃烧各对流受热面的热力计算,分析了增压富氧燃烧条件烟气压力变化对各受热面换热特性的影响。研究结果表明:随烟气压力的升高,烟气流速下降,但烟气的Re却基本保持不变,对流换热系数有所增加。增压富氧燃烧烟气的辐射换热系数比空气燃烧烟气辐射换热系数大。实现同样的换热量,增压富氧燃烧条件下(φ(O2):φ(CO2)=21:79、φ(O2):φ(CO2)=30:70)对流受热面所需换热面积比常规空气燃烧条件下少。 展开更多
关键词 对流受热面 燃料燃烧 传热特性 高压氧 燃烧条件 锅炉 排放控制技术 C02
下载PDF
Influence of heating rate on reactivity and surface chemistry of chars derived from pyrolysis of two Chinese low rank coals 被引量:6
12
作者 Liang Dingcheng Xie Qiang +2 位作者 Li Guangsheng Cao Junya Zhang Jun 《International Journal of Mining Science and Technology》 EI CSCD 2018年第4期610-616,共7页
A series of char samples were derived from pyrolysis of two typical low-rank coals in China(Shengli lignite and Shenmu bituminous coal) at low, medium and fast heating rates, respectively, to the same pyrolysis temper... A series of char samples were derived from pyrolysis of two typical low-rank coals in China(Shengli lignite and Shenmu bituminous coal) at low, medium and fast heating rates, respectively, to the same pyrolysis temperature 750 °C. Then these chars were characterized by means of thermogravimetric analysis and Fourier transform infrared spectrometer with the aim to investigate the influence of heating rate in pyrolysis process on gasification reactivity and surface chemistry of them. Besides, a homogeneous model was used to quantitatively analyze the activation energy of gasification reaction. The results reveal that Shengli lignite and its derived chars behave higher gasification reactivity and have less content of oxygen functional groups than Shenmu coal and chars. Meanwhile, chars derived from Shengli lignite at 50 °C/min and Shenmu coal at 200 °C/min have the greatest gasification reactivity, respectively. The oxygen functional groups in Shengli lignite are easily thermo-decomposed, and they are less affected by the heating rate, while that in Shenmu coal have a significant change with the variation of heating rate.In addition, there is no good correlation between the change of oxygen functional groups and that of the gasification reactivity of the derived chars from pyrolysis at different heating rates. 展开更多
关键词 热分解过程 气化反应 表面化学 加热率 褐煤 字符 中国 Fourier
下载PDF
Regeneration of waste activated carbon after extracting gold with steam under microwave heating:Optimization using response surface methodology 被引量:2
13
作者 左勇刚 张利波 +3 位作者 彭金辉 C.SRINIVASAKANNAN 刘秉国 马爱元 《Journal of Central South University》 SCIE EI CAS 2014年第8期3233-3240,共8页
The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied.The influence of the activation temperature,activation duration and steam flow rate on iod... The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied.The influence of the activation temperature,activation duration and steam flow rate on iodine adsorption value and regeneration yield of activated carbon was investigated.The response surface methodology(RSM) technique was utilized to optimize the process conditions.The optimum conditions for the preparation of activated carbon are identified to be activation temperature of 831 °C,activation duration of 40 min and steam flow rate of 2.67 mL/min.The optimum conditions result in an activated carbon with an iodine number of 1048 mg/g and a yield of 40%,and the BET surface area evaluated using nitrogen adsorption isotherm is 1493 m2/g,with total pore volume of 1.242 cm3/g.And the pore structure of activated carbon regenerated is mainly composed of micropores and a small amount of mesopores. 展开更多
关键词 活性炭再生 优化工艺条件 加热蒸汽 加热提取 微波 黄金 BET表面积 活化温度
下载PDF
EFFECTS OF CONDENSATION HEATING AND SURFACE FLUXES ON THE DEVELOPMENT OF A SOUTH CHINA MESOSCALE CONVECTIVE SYSTEM (MCS) 被引量:1
14
作者 蒙伟光 李江南 +3 位作者 王安宇 冯瑞权 古志明 闫敬华 《Journal of Tropical Meteorology》 SCIE 2005年第2期144-153,共10页
A sensitive numerical simulation study is carried out to investigate the effects of condensation heating and surface fluxes on the development of a South China MCS that occurred during 23 – 24 May 1998. The results r... A sensitive numerical simulation study is carried out to investigate the effects of condensation heating and surface fluxes on the development of a South China MCS that occurred during 23 – 24 May 1998. The results reveal the following: (1) Condensation heating plays an important role in the development of MCS. In every different stage, without condensation heating, MCS precipitation is significantly reduced, and quickly dissipates. (2) Condensation heating demonstrates most importantly during the early development stages of MCS vortex; as the vortex develops stronger, the condensation heating effects reduces. (3) By affecting the MCS development processes, condensation heating also influences the formation of MCS mesoscale environment structure features such as low-level jet (mLLJ), upper-level divergence. (4) By changing the antecedent environmental circulation, the surface fluxes also play an important role in the development of MCS. Because of the surface heating, pressure declines over the heavy rainfall and MCS happening regions, which results in the intensification of southerly flows from the ocean along the South China coastline areas, and leads to the enhancement of horizontal convergence and increase of vapor amount in the lower layer. All of these make the atmosphere more unstable and more favorable for the convection. 展开更多
关键词 中国 中尺度天气系统 对流天气 暴雨 MCS
下载PDF
On-Line Life Monitoring Technique for Tube Bundles of Boiler High-Temperature Heating Surface
15
作者 YangDong WangZhongyuan 《Electricity》 2005年第1期12-16,共5页
High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and eco... High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers. 展开更多
关键词 电站锅炉 高温热处理 管束 在线监测 生命评估
下载PDF
Parameterization of Heat Fluxes at Heterogeneous Surfaces by Integrating Satellite Measurements with Surface Layer and Atmospheric Boundary Layer Observations 被引量:10
16
作者 马耀明 Massimo MENENTI Reinder FEDDES 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第2期328-336,共9页
The regional heat flux exchange between heterogeneous landscapes and the nearby surface layer (SL) is a key issue in the study of land-atmosphere interactions over arid areas such as the Heihe River basin in northwe... The regional heat flux exchange between heterogeneous landscapes and the nearby surface layer (SL) is a key issue in the study of land-atmosphere interactions over arid areas such as the Heihe River basin in northwestern China and in high elevation areas such as the Tibetan Plateau. Based on analysis of the land surface heterogeneity and its effects on the overlying air flow, the use of SL observations, atmospheric boundary layer (ABL) observations, and satellite remote sensing (RS) measurements along with three parameterization methodologies (here, termed as the RS, tile, and blending approaches) have been proposed to estimate the surface heat flux densities over heterogeneous landscapes. The tile and blending approaches have also been implemented during HEIhe basin Field Experiment (HEIFE), the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project on the Tibetan Plateau (CAMP/Tibet), the Arid Environment Comprehensive Monitoring Plan '95 (AECMP'95), and the DunHuang Experiment (DHEX). The results showed that these two proposed parameterization methodologies can be accurately used over heterogeneous land surfaces. 展开更多
关键词 land surface heat fluxes heterogeneous landscapes parameterization methodologies
下载PDF
An Assessment of the Quality of Surface Sensible Heat Flux Derived from Reanalysis Data through Comparison with Station Observations in Northwest China 被引量:8
17
作者 周连童 黄荣辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第3期500-512,共13页
The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000. While ... The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000. While the seasonal variation in sensible heat flux is found to be consistent between station observations and the two reanalysis datasets, both land-air temperatures difference and surface wind speed show remarkable systematic differences. The sensible heat flux displays obvious interdecadal variability that is season-dependent. In the ERA-40 data, the sensible heat flux in spring, fall, and winter shows interdecadal variations that are similar to observations. In the NCEP-NCAR reanalysis data, sensible heat flux variations are inconsistent with and sometimes even opposite to observations. While surface wind speeds from the NCEP-NCAR reanalysis data show interdecadal changes consistent with station observations, variations in land-air temperature difference differ greatly from the observed dataset. In terms of land-air temperature difference and surface wind speed, almost no consistency with observations can be identified in the ERA-40 data, apart from the land-air temperature difference in fall and winter. These inconsistencies pose a major obstacle to the application in climate studies of surface sensible heat flux derived from reanalysis data. 展开更多
关键词 sensible heat flux land-air temperature difference surface wind speed
下载PDF
Estimation of ground heat flux and its impact on the surface energy budget for a semi-arid grassland 被引量:11
18
作者 JinQing Zuo JieMin Wang +3 位作者 JianPing Huang WeiJing Li GuoYin Wang HongLi Ren 《Research in Cold and Arid Regions》 2011年第1期41-50,共10页
Three approaches, i.e., the harmonic analysis (HA) technique, the thermal diffusion equation and correction (TDEC) method, and the calorimetric method used to estimate ground heat flux, are evaluated by using obse... Three approaches, i.e., the harmonic analysis (HA) technique, the thermal diffusion equation and correction (TDEC) method, and the calorimetric method used to estimate ground heat flux, are evaluated by using observations from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) in July, 2008. The calorimetric method, which involves soil heat flux measurement with an HFP01SC self-calibrating heat flux plate buried at a depth of 5 cm and heat storage in the soil between the plate and the surface, is here called the ITHP approach. The results show good linear relationships between the soil heat fluxes measured with the HFP01SC heat flux plate and those calculated with the HA technique and the TDEC method, respectively, at a depth of 5 cm. The soil heat fluxes calculated with the latter two methods well follow the phase measured with the HFP01SC heat flux plate. The magnitudes of the soil heat flux calculated with the HA technique and the TDEC method are close to each other, and they are about 2 percent and 6 percent larger than the measured soil heat flux, respectively, which mainly occur during the nighttime. Moreover, the ground heat fluxes calculated with the TDEC method and the HA technique are highly correlated with each other (R2= 0.97), and their difference is only about 1 percent. The TDEC-calculated ground heat flux also has a good linear relationship with the ITttP-calculated ground heat flux (R2 = 0.99), but their difference is larger (about 9 percent). Furthermore, compared to the HFP01SC direct measurements at a depth of 5 cm, the ground heat flux calculated with the HA technique, the TDEC method, and the ITHP approach can improve the surface energy budget closure by about 6 percent, 7 percent, and 6 percent at SACOL site, respectively. Therefore, the contribution of ground heat flux to the surface energy budget is very important for the semi-arid grassland over the Loess Plateau in China. Using turbulent heat fluxes with common corrections, soil heat storage between the surface and the heat flux plate can improve the surface energy budget closure by about 6 to 7 percent, resulting in a closure of 82 to 83 percent at the SACOL site. 展开更多
关键词 soil heat flux harmonic analysis TDEC method self-calculating heat flux plate surface energy budget
下载PDF
Connections between Surface Sensible Heat Net Flux and Regional Summer Precipitation over China 被引量:4
19
作者 汤燕冰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第6期897-908,共12页
Using the observed monthly precipitation and NCEP (National Centers for Environmental Prediction) reanalysis surface ?ux data from 1951–2000, the connections between the seasonal SSHNF (Surface Sensible Heat Net Fl... Using the observed monthly precipitation and NCEP (National Centers for Environmental Prediction) reanalysis surface ?ux data from 1951–2000, the connections between the seasonal SSHNF (Surface Sensible Heat Net Flux) over the Asian continent and the regional summer precipitation of China were examined. The patterns of collective and individual correlations were identi?ed. The results indicate that the response of the regional summer precipitation of China to the seasonal SSHNF over the study area varies according to region and season. The interannual variability of summer precipitation anomalies over Xinjiang, the northernmost Northeast China, and the North China Plain are most sensitive to the anomaly of the seasonal SSHNF. There are signi?cant collective correlations between the interannual anomalies of the seasonal SSHNF and summer precipitation over these regions. In contrast, the Southeast Tibetan Plateau, Huaihe River Valley, and surrounding areas exhibit the least signi?cant correlation. Signi?cant individual correlations exist between the summer precipitation over the southernmost Northeast China, East Inner Mongolia, South of the Yangtze River and South China and the seasonal SSHNF in certain seasons over the following areas: near Lake Baikal and Lake Balkhash, near Da Hinggan Mountains and Xiao Hinggan Mountains, as well as the Tibetan Plateau. 展开更多
关键词 surface sensible heat flux summer precipitation correlation analysis
下载PDF
Surface latent heat flux anomalies preceding inland earthquakes in China 被引量:4
20
作者 Kai Qin Guangmeng Guo Lixin Wu 《Earthquake Science》 CSCD 2009年第5期555-562,共8页
Using data from the National Center for Environmental Prediction (NCEP), the paper analyzed the surface latent heat flux (SLHF) variations for five inland earthquakes occurred in some lake area, moist area and ari... Using data from the National Center for Environmental Prediction (NCEP), the paper analyzed the surface latent heat flux (SLHF) variations for five inland earthquakes occurred in some lake area, moist area and arid area of China during recent years. We used the SLHF daily and monthly data to differentiate the global and seasonal variability from the transient local anomalies. The temporal scale of the observed variations is 1-2 months before and after the earthquakes, and spatial scale is about 10°×10°. The result suggests that the SLHFs adjacent the epicenters all are anomalous high value (〉μ+2σ) 8-30 days before the shocks as compared with past several years of data. Different from the abnormal meteorological phenomenon, the distribution of the anomalies was isolated and local, which usually occurred in the epicenter and its adjacent area, or along the fault lines. The increase of SLHF was tightly related with the season which the earthquake occurs in; the maximal (125 W/m^2, Pu'er earthquake) and minimal (25 W/m^2, Gaize earthquake) anomalies were in summer and winter, respectively. The abundant surface water and groundwater in the epicenter and its adjacent region can provide necessary condition for the change of SLHF. To further confirm the reliability of SLHF anomaly, it is necessary to explore its physical mechanism in depth by more earthquake cases. 展开更多
关键词 inland earthquake surface latent heat flux thermal anomaly satellite data
下载PDF
上一页 1 2 237 下一页 到第
使用帮助 返回顶部