The grain-filling processes at different grain positions of curved-panicle type Longjing 29 and semi-erect-panicle type Longjing 31, two major rice (Oryza sativa L.) cultivars in Heilongjiang Province, were simulate...The grain-filling processes at different grain positions of curved-panicle type Longjing 29 and semi-erect-panicle type Longjing 31, two major rice (Oryza sativa L.) cultivars in Heilongjiang Province, were simulated by Richards growth eq-uation, so as to determine the reason of great differences in head rice rate of different rice cul- tivar among different years and to improve the processing quality of different rice cul- tivar through cultivation regulation measures. The results showed that the yield of Longjing 29 was slightly higher than that of Longjing 31, but the head rice rate of Longjing 29 was significantly lower than that of Longjing 31. More grains on sec- ondary rachis branch resulted in lower plumpness, lower seed-setting rate and lower milled rice rate of Longjing 29. The grain-filling rates at the six grain positions of Longjing 31 reached the peaks simultaneously, so the synchronous grain filling char- acteristic of Longjing 31 was more obvious. The grain-filling rate on the primary rachis branch of Longjing 31 was higher, and it reached the peak in the middle peri- od. Although the grain-filling rate on the secondary rachis branch of Longjing 31 was lower, it early reached the peak. In addition, the middle and late filling period of Longjing 31 was longer, resulting in plump and compact grains on the secondary rachis branch of Longjing 31. After the grain-filling rate on the primary rachis branch was decreased, the grain-filling rate on the secondary rachis branch of Longjing 29 started to be increased greatly, characterized by asynchronous grain filling. In the early grain filling stage, the grains on the upper, middle and basal secondary rachis branch were all significantly suppressed by those on the primary rachis branch of Longjing 29. The initial growth potential and maximum filling rate of grains on the secondary rachis branch of Longjing 29 were all lower. The grain-filling rate on the secondary rachis branch of Longjing 29 late reached the peak. Even worse, the mid- dle and late filling period of Longjing 29 was shorter. Therefore, the grains of Longjing 29 had poor plumpness. Synchronous grain filling led to small difference in grain quality within the same panicle, and this was also the reason for stable head rice rate of Longjing 31 among different years. In contrast, asynchronous grain filling led to great difference in grain quality within the same panicle of Longjing 29. In addi- tion, low temperature often occurred during the fast filling of grains on the secondary rachis branch of Longjing 29. Thus, the head rice rate of Longjing 29 was decreased.展开更多
Using 18 indica rice varieties with different panicle weight, the photosynthetic characteristics and assimilate's accumulation and transformation in heavy panicle type of rice(HPT)were studied. The results showed ...Using 18 indica rice varieties with different panicle weight, the photosynthetic characteristics and assimilate's accumulation and transformation in heavy panicle type of rice(HPT)were studied. The results showed that the net photosynthetic rate of the flag leaf in HPT after heading was obviously higher than that in medium panicle type(MPT)and light panicle type(LPT). The reason for the high net photosynthetic rate in HPT was the increase of Rubisco activities and chlorophyll content, and keeping high assimilate ability to CO2 under high and low light intensity, high temperature and low CO2 content, and light midday depression and wide adaptability to environmental conditions. The high net photosynthetic rate of HPT might be also the results of its excellent stomatal characteristics and higher total quantity of stomatal opening degrees(stomatal density X stomatal opening degrees). There was a large amount of dry matter production after heading and obvious high assimilate's transformation to panicle in HPT.展开更多
The characteristics of vascular bundle in the first internode from top and grain-filling of heavy panicle type hybrid rice(HPTHR) were studied. The results were as follows: The HPTHR had more vascular bundles and a mu...The characteristics of vascular bundle in the first internode from top and grain-filling of heavy panicle type hybrid rice(HPTHR) were studied. The results were as follows: The HPTHR had more vascular bundles and a much bigger area of single vascular bundle, all vascular bundle, all phloem and all xylem in the first inter-node than Shanyou63. The vascular bundles had the similar load of spikelet number and sink capacity between the HPTHR and Shanyou63. The HPTHR had not only a larger sink but also normal grain-filling and sink-filling, high seed-setting rate and heavier panicle. Those characteristics of vascular bundle were the biological bases for the larger and heavier panicle of HPTHR. The results also indicated that the breeding model of HPTHR was an effective measure for the super high-yielding rice breeding.展开更多
This study aims to investigate the variation in occurrence of white-belly rice kernel(WBRK) and white-core rice kernel(WCRK) among different positions within a panicle. Twenty-four M4 mutants involved in four pani...This study aims to investigate the variation in occurrence of white-belly rice kernel(WBRK) and white-core rice kernel(WCRK) among different positions within a panicle. Twenty-four M4 mutants involved in four panicle types, namely the compact, intermediate, loose, and chicken foot panicle were used. They derived from a japonica rice cultivar Wuyujing 3. Considerable differences in morphological characters existed among the four types of panicle, especially in panicle length, the secondary branch number and ratio of grain number to total branch length. Marked differences were found in WBRK and WCRK among different positions within a panicle for all types of panicle. In general, grains located on the primary rachis and top rachis branches had higher WBRK and WCRK percentage than those on the secondary rachis and bottom rachis branches. WCRK exhibited larger variation among grain positions than WBRK did. Moreover, there was a significant difference in WCRK/WBRK among grain positions within a panicle, with primary rachis and top rachis branches having higher values than the secondary and bottom rachis. In addition, panicle type showed no significant effect on the pattern of WBRK and WCRK occurrence within a panicle. The results indicated the difference in mechanism of WBRK and WCRK formation in grain position within a panicle, and are valuable for breeding and agronomic practices aimed at lowering chalky grain rate.展开更多
Two recombinant inbred line (RIL) populations, one derived from a cross between Zhongyouzao 8 (indica) and Toyonishiki (japonica) and the other from a cross between Qishanzhan (indica) and Akihikari (japonica...Two recombinant inbred line (RIL) populations, one derived from a cross between Zhongyouzao 8 (indica) and Toyonishiki (japonica) and the other from a cross between Qishanzhan (indica) and Akihikari (japonica), were grown in Liaoning and Sichuan Provinces, China, to study the panicle type index (PTI, the ratio of a number of node position on panicle axis where the secondary branch with the most numerous secondary branch grains is located to the number of primary branches) and its relationships with subspecies characteristics and yield traits. With continuous distribution of PTI and numerous of lines with different PTIs in the progenies, indica-japonica hybridization could be a method for breeding cultivars with ideal panicle type. PTI was significantly influenced by environments, with a significant decrease from Liaoning to Sichuan A significantly negative correlation was found between PTI and most of subspecies characteristics. PTI varied remarkably with different subspecies types. As a whole, it showed a trend of indica (H)〉indicalinous (H')〉japonicalinous (K')〉japonica (K) However, it is not appropriate to regard PTI as a parameter for subspecies classification in rice because it was recombined in the filial generations of cross between indica and japonica rice. The negative correlations were found between PTI and most of panicle characteristics, as well as yield-related traits. Based on PTI, most of lines from the two populations were middle dominant panicle type (the number of grains on the secondary branch is numerous in middle position of the panicle) and lower dominant panicle type (the number of grains on the secondary branch is numerous in lower position of the panicle and becomes less towards the top of panicle) with significant yield advantages.展开更多
Under field conditions, three erect panicle type japonica dee cultivars and three curved panicle type japonica rice cultivars were applied as experimental materials to investigate the differences of protein compositio...Under field conditions, three erect panicle type japonica dee cultivars and three curved panicle type japonica rice cultivars were applied as experimental materials to investigate the differences of protein composition of grains at different positions in panicles between two different panicle types of japonica rice. Accord- ing to the results, the panicle type of japonica rice had no direct correlation with albumin content, globulin content, prolamin content and glutelin content in rice, variations of protein composition of grains at different positions in panicles. There were certain correlations between soluble protein contents at different grain posi- tions in the same panicle and the flowering order of glumous flowers in the panicle. Albumin content, prolamin content and glutelin content in grains on secondary rachis branches of two panicle types (erect and curved) of japonica rice cuhivars were higher than that on primary rachis branches, while globulin content exhibited an opposite trend. Globulin content, prolamin content and glutelin content in grains at different positions demonstrated a descending order of bottom 〉 middle 〉 top, while albumin content exhibited an opposite trend. The interactions between primary and secondary rachis branches and among top, middle and bottom rachis branches significantly affected soluble protein contents.展开更多
The historical changes in rice yields across China were explored. The physiological mechanisms and genetic basis of the erect and large panicle super-high-yield plant type model for breeding japonica super rice were a...The historical changes in rice yields across China were explored. The physiological mechanisms and genetic basis of the erect and large panicle super-high-yield plant type model for breeding japonica super rice were analyzed mainly on the panicle type, number of large vascular bundles (LVB) in the panicle neck, and the panicle type index (PTI). In the production point of view, we suggested that, for the breeding of super-high-yield japonica rice, the erect panicle types with more LVB numbers in the panicle neck and superior upper grains in the secondary branches would be the key factors. The information has potential significance in the rice breeding and productivity not only in China but also throughout the rice production areas of the world.展开更多
Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structur...Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structure, morphological characteristics and yield. The results showed that the percentage of productive tiller reduced first, and increased afterwards as row-spacing increasing. The relationship between row spacing and the percentage of productive tiller fitted a quadratic regression. The effects of row spacing on leaf area index (LAI) at later tillering stage and the highest stem number per square meter also followed a quadratic regression relationship with increasing first and then reducing. The effects of row-spacing on primary branch were larger than the secondary branch in Longjing 20. However, the trend in Longjing 21 was opposite. The relationship between row spacing and seed setting rate of the secondary branch or panicle was negatively correlated. An extreme significant negative correlation was obtained between seed setting rate of secondary branch in Longjing 20. There was no significant positive correlation between row-spacing and yield in Longjing 20 (R2=0.68). However, the negative correlation between row-spacing and yield of Longjing 21 was extremely significant (R2=–0.96**). The canopy structure of MCP was more sensitive to row-spacing. The positive correlation between row spacing and the length of the flag leaf (R2=0.89**), the width of the flag leaf (R2=0.85*), the length of the last internode (R2=0.85*), the length of the last 2nd internode (R2=0.96**) or the length of the panicle (R2=0.91**) was significant or extremely significant in Longjing 20, but not in Longjing 21. The wider row-spacing promoted the accumulation of the dry matter of panicle, stem and leaf and the yield formation in MCP. The best row-spacing in Longjing 20 was 30 cm. For Longjing 21, the narrower row-spacing was better. The best row-spacing of it was 21 cm. These results suggested that improved the population environment of MCP or the utilization of the free space in the field of FEP could be reached either by wider row-spacing or narrow row-spacing.展开更多
Using 15 indica rice varieties with different panicle weight, some ideal plant type characteristics in heavy panicle type of hybrid rice (HPT) and their relation to yield and its components were studied. Results sho...Using 15 indica rice varieties with different panicle weight, some ideal plant type characteristics in heavy panicle type of hybrid rice (HPT) and their relation to yield and its components were studied. Results showed that the leaf area index (LAI) of the HPT varieties was lower than that of medium panicle type (MPT) and light panicle type (LPT) varieties, but its decreasing rate of LAI and efficient LAI after heading was slower and had much higher percentage of efficient LAI, specific leaf weight, and ratio of grain to leaf area (cm^2) in comparison with the MPT and the LPT varieties. The length, width, thickness, and area of top three leaves of the HPT varieties were significantly larger than those of the MPT and the LPT varieties, and these components of top three leaves were significantly and positively correlated with the number of spikelets and filled grains, grain weight per panicle, and grain yield. The flag leaf in HPT varieties was erect with sorrow leaf angle, and their leaf angle of 2nd and 3rd leaf from top increased in sequence. The plant height of the HPT varieties was higher than that of the MPT and the LPT varieties, and their leaf site of top three leaves also increased in sequence. Therefore, HPT varieties as an ideal plant type could increase the utilization efficiency of sunlight energy. The ideal plant type characteristics and their adjuncts for the HPT varieties are proposed in this article.展开更多
The basic premise of high yield in rice is to improve leaf photosynthetic efficiency and coordinate the sourcesink relationship in rice plants. Quantitative trait loci (QTLs) related to morphological traits and chlo...The basic premise of high yield in rice is to improve leaf photosynthetic efficiency and coordinate the sourcesink relationship in rice plants. Quantitative trait loci (QTLs) related to morphological traits and chlorophyll content of rice leaves were detected at the stages of heading to maturity, and a major QTL (qLSCHL4) related to flag leaf shape and chlorophyll content was detected at both stages in recombinant inbred lines constructed using the indica rice cultivar 93-11 and the japonica rice cultivar Nipponbare. Map-based cloning and expression analysis showed that LSCHL4 is allelic to NAL1, a gene previously reported in narrow leaf mutant of rice. Overexpression lines transformed with vector carrying LSCHL4 from Nipponbare and a near-isogenic line of 93-11 (NIL-9311) had significantly increased leaf chlorophyll content, enlarged flag leaf size, and improved panicle type. The average yield of NIL-9311 was 18.70% higher than that of 93-11. These results indicate that LSCHL4 had a pleiotropic function. Exploring and pyramiding more high-yield alleles resem- bling LSCHL4 for super rice breeding provides an effective way to achieve new breakthroughs in raising rice yield and generate new ideas for solving the problem of global food safety.展开更多
基金Supported by National Key Technology Research and Development Program(2012BAD04B01-02)Science Foundation of Heilongjiang Province for Outstanding Young Scientists(JG05-22)+2 种基金Key Science and Technology Program of Heilongjiang Province(GA09B102-3)Youth Foundation for Agricultural Science and Technology Innovation in Heilongjiang Province in 2012Heilongjiang Postdoctoral Sustentation Fund(LBH-Z10038)~~
文摘The grain-filling processes at different grain positions of curved-panicle type Longjing 29 and semi-erect-panicle type Longjing 31, two major rice (Oryza sativa L.) cultivars in Heilongjiang Province, were simulated by Richards growth eq-uation, so as to determine the reason of great differences in head rice rate of different rice cul- tivar among different years and to improve the processing quality of different rice cul- tivar through cultivation regulation measures. The results showed that the yield of Longjing 29 was slightly higher than that of Longjing 31, but the head rice rate of Longjing 29 was significantly lower than that of Longjing 31. More grains on sec- ondary rachis branch resulted in lower plumpness, lower seed-setting rate and lower milled rice rate of Longjing 29. The grain-filling rates at the six grain positions of Longjing 31 reached the peaks simultaneously, so the synchronous grain filling char- acteristic of Longjing 31 was more obvious. The grain-filling rate on the primary rachis branch of Longjing 31 was higher, and it reached the peak in the middle peri- od. Although the grain-filling rate on the secondary rachis branch of Longjing 31 was lower, it early reached the peak. In addition, the middle and late filling period of Longjing 31 was longer, resulting in plump and compact grains on the secondary rachis branch of Longjing 31. After the grain-filling rate on the primary rachis branch was decreased, the grain-filling rate on the secondary rachis branch of Longjing 29 started to be increased greatly, characterized by asynchronous grain filling. In the early grain filling stage, the grains on the upper, middle and basal secondary rachis branch were all significantly suppressed by those on the primary rachis branch of Longjing 29. The initial growth potential and maximum filling rate of grains on the secondary rachis branch of Longjing 29 were all lower. The grain-filling rate on the secondary rachis branch of Longjing 29 late reached the peak. Even worse, the mid- dle and late filling period of Longjing 29 was shorter. Therefore, the grains of Longjing 29 had poor plumpness. Synchronous grain filling led to small difference in grain quality within the same panicle, and this was also the reason for stable head rice rate of Longjing 31 among different years. In contrast, asynchronous grain filling led to great difference in grain quality within the same panicle of Longjing 29. In addi- tion, low temperature often occurred during the fast filling of grains on the secondary rachis branch of Longjing 29. Thus, the head rice rate of Longjing 29 was decreased.
文摘Using 18 indica rice varieties with different panicle weight, the photosynthetic characteristics and assimilate's accumulation and transformation in heavy panicle type of rice(HPT)were studied. The results showed that the net photosynthetic rate of the flag leaf in HPT after heading was obviously higher than that in medium panicle type(MPT)and light panicle type(LPT). The reason for the high net photosynthetic rate in HPT was the increase of Rubisco activities and chlorophyll content, and keeping high assimilate ability to CO2 under high and low light intensity, high temperature and low CO2 content, and light midday depression and wide adaptability to environmental conditions. The high net photosynthetic rate of HPT might be also the results of its excellent stomatal characteristics and higher total quantity of stomatal opening degrees(stomatal density X stomatal opening degrees). There was a large amount of dry matter production after heading and obvious high assimilate's transformation to panicle in HPT.
文摘The characteristics of vascular bundle in the first internode from top and grain-filling of heavy panicle type hybrid rice(HPTHR) were studied. The results were as follows: The HPTHR had more vascular bundles and a much bigger area of single vascular bundle, all vascular bundle, all phloem and all xylem in the first inter-node than Shanyou63. The vascular bundles had the similar load of spikelet number and sink capacity between the HPTHR and Shanyou63. The HPTHR had not only a larger sink but also normal grain-filling and sink-filling, high seed-setting rate and heavier panicle. Those characteristics of vascular bundle were the biological bases for the larger and heavier panicle of HPTHR. The results also indicated that the breeding model of HPTHR was an effective measure for the super high-yielding rice breeding.
基金supported by the Program for New Century Excellent Talents in University, China (NCET-10-0472)the National Natural Science Foundation of China (30971733 and 31171485)
文摘This study aims to investigate the variation in occurrence of white-belly rice kernel(WBRK) and white-core rice kernel(WCRK) among different positions within a panicle. Twenty-four M4 mutants involved in four panicle types, namely the compact, intermediate, loose, and chicken foot panicle were used. They derived from a japonica rice cultivar Wuyujing 3. Considerable differences in morphological characters existed among the four types of panicle, especially in panicle length, the secondary branch number and ratio of grain number to total branch length. Marked differences were found in WBRK and WCRK among different positions within a panicle for all types of panicle. In general, grains located on the primary rachis and top rachis branches had higher WBRK and WCRK percentage than those on the secondary rachis and bottom rachis branches. WCRK exhibited larger variation among grain positions than WBRK did. Moreover, there was a significant difference in WCRK/WBRK among grain positions within a panicle, with primary rachis and top rachis branches having higher values than the secondary and bottom rachis. In addition, panicle type showed no significant effect on the pattern of WBRK and WCRK occurrence within a panicle. The results indicated the difference in mechanism of WBRK and WCRK formation in grain position within a panicle, and are valuable for breeding and agronomic practices aimed at lowering chalky grain rate.
基金supported by the National Natural Science Foundation of China(GrantNo.30871468)the Young Teacher Scientific Research Fund of Shenyang Agricultural University,China(Grant No.20081001)
文摘Two recombinant inbred line (RIL) populations, one derived from a cross between Zhongyouzao 8 (indica) and Toyonishiki (japonica) and the other from a cross between Qishanzhan (indica) and Akihikari (japonica), were grown in Liaoning and Sichuan Provinces, China, to study the panicle type index (PTI, the ratio of a number of node position on panicle axis where the secondary branch with the most numerous secondary branch grains is located to the number of primary branches) and its relationships with subspecies characteristics and yield traits. With continuous distribution of PTI and numerous of lines with different PTIs in the progenies, indica-japonica hybridization could be a method for breeding cultivars with ideal panicle type. PTI was significantly influenced by environments, with a significant decrease from Liaoning to Sichuan A significantly negative correlation was found between PTI and most of subspecies characteristics. PTI varied remarkably with different subspecies types. As a whole, it showed a trend of indica (H)〉indicalinous (H')〉japonicalinous (K')〉japonica (K) However, it is not appropriate to regard PTI as a parameter for subspecies classification in rice because it was recombined in the filial generations of cross between indica and japonica rice. The negative correlations were found between PTI and most of panicle characteristics, as well as yield-related traits. Based on PTI, most of lines from the two populations were middle dominant panicle type (the number of grains on the secondary branch is numerous in middle position of the panicle) and lower dominant panicle type (the number of grains on the secondary branch is numerous in lower position of the panicle and becomes less towards the top of panicle) with significant yield advantages.
基金Supported by Science and Technology Project for Grain Production in National Science and Technology Support Program(2011BAD16B11-02YJ012012BAD04B01-02)+1 种基金Key Scientific and Technological Project of Heilongjiang Province(GA13B101)Fund for Distingnished Young Scholars of Heilongjiang Academy of Agricultural Sciences(2014)
文摘Under field conditions, three erect panicle type japonica dee cultivars and three curved panicle type japonica rice cultivars were applied as experimental materials to investigate the differences of protein composition of grains at different positions in panicles between two different panicle types of japonica rice. Accord- ing to the results, the panicle type of japonica rice had no direct correlation with albumin content, globulin content, prolamin content and glutelin content in rice, variations of protein composition of grains at different positions in panicles. There were certain correlations between soluble protein contents at different grain posi- tions in the same panicle and the flowering order of glumous flowers in the panicle. Albumin content, prolamin content and glutelin content in grains on secondary rachis branches of two panicle types (erect and curved) of japonica rice cuhivars were higher than that on primary rachis branches, while globulin content exhibited an opposite trend. Globulin content, prolamin content and glutelin content in grains at different positions demonstrated a descending order of bottom 〉 middle 〉 top, while albumin content exhibited an opposite trend. The interactions between primary and secondary rachis branches and among top, middle and bottom rachis branches significantly affected soluble protein contents.
基金supported by the National Natural Science Foundation of China (30871468)the Na-tional 973 Program of China (2009CB126007)
文摘The historical changes in rice yields across China were explored. The physiological mechanisms and genetic basis of the erect and large panicle super-high-yield plant type model for breeding japonica super rice were analyzed mainly on the panicle type, number of large vascular bundles (LVB) in the panicle neck, and the panicle type index (PTI). In the production point of view, we suggested that, for the breeding of super-high-yield japonica rice, the erect panicle types with more LVB numbers in the panicle neck and superior upper grains in the secondary branches would be the key factors. The information has potential significance in the rice breeding and productivity not only in China but also throughout the rice production areas of the world.
基金Supported by the National Key Technology R&D Program (2007BAD65B01-4)Science and Technology Development Plan of Heilongjiang Province in China (GB06B104-1-5)Key Technology R&D Program of Heilongjiang Province in China (GA09B102-3)
文摘Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structure, morphological characteristics and yield. The results showed that the percentage of productive tiller reduced first, and increased afterwards as row-spacing increasing. The relationship between row spacing and the percentage of productive tiller fitted a quadratic regression. The effects of row spacing on leaf area index (LAI) at later tillering stage and the highest stem number per square meter also followed a quadratic regression relationship with increasing first and then reducing. The effects of row-spacing on primary branch were larger than the secondary branch in Longjing 20. However, the trend in Longjing 21 was opposite. The relationship between row spacing and seed setting rate of the secondary branch or panicle was negatively correlated. An extreme significant negative correlation was obtained between seed setting rate of secondary branch in Longjing 20. There was no significant positive correlation between row-spacing and yield in Longjing 20 (R2=0.68). However, the negative correlation between row-spacing and yield of Longjing 21 was extremely significant (R2=–0.96**). The canopy structure of MCP was more sensitive to row-spacing. The positive correlation between row spacing and the length of the flag leaf (R2=0.89**), the width of the flag leaf (R2=0.85*), the length of the last internode (R2=0.85*), the length of the last 2nd internode (R2=0.96**) or the length of the panicle (R2=0.91**) was significant or extremely significant in Longjing 20, but not in Longjing 21. The wider row-spacing promoted the accumulation of the dry matter of panicle, stem and leaf and the yield formation in MCP. The best row-spacing in Longjing 20 was 30 cm. For Longjing 21, the narrower row-spacing was better. The best row-spacing of it was 21 cm. These results suggested that improved the population environment of MCP or the utilization of the free space in the field of FEP could be reached either by wider row-spacing or narrow row-spacing.
文摘Using 15 indica rice varieties with different panicle weight, some ideal plant type characteristics in heavy panicle type of hybrid rice (HPT) and their relation to yield and its components were studied. Results showed that the leaf area index (LAI) of the HPT varieties was lower than that of medium panicle type (MPT) and light panicle type (LPT) varieties, but its decreasing rate of LAI and efficient LAI after heading was slower and had much higher percentage of efficient LAI, specific leaf weight, and ratio of grain to leaf area (cm^2) in comparison with the MPT and the LPT varieties. The length, width, thickness, and area of top three leaves of the HPT varieties were significantly larger than those of the MPT and the LPT varieties, and these components of top three leaves were significantly and positively correlated with the number of spikelets and filled grains, grain weight per panicle, and grain yield. The flag leaf in HPT varieties was erect with sorrow leaf angle, and their leaf angle of 2nd and 3rd leaf from top increased in sequence. The plant height of the HPT varieties was higher than that of the MPT and the LPT varieties, and their leaf site of top three leaves also increased in sequence. Therefore, HPT varieties as an ideal plant type could increase the utilization efficiency of sunlight energy. The ideal plant type characteristics and their adjuncts for the HPT varieties are proposed in this article.
文摘The basic premise of high yield in rice is to improve leaf photosynthetic efficiency and coordinate the sourcesink relationship in rice plants. Quantitative trait loci (QTLs) related to morphological traits and chlorophyll content of rice leaves were detected at the stages of heading to maturity, and a major QTL (qLSCHL4) related to flag leaf shape and chlorophyll content was detected at both stages in recombinant inbred lines constructed using the indica rice cultivar 93-11 and the japonica rice cultivar Nipponbare. Map-based cloning and expression analysis showed that LSCHL4 is allelic to NAL1, a gene previously reported in narrow leaf mutant of rice. Overexpression lines transformed with vector carrying LSCHL4 from Nipponbare and a near-isogenic line of 93-11 (NIL-9311) had significantly increased leaf chlorophyll content, enlarged flag leaf size, and improved panicle type. The average yield of NIL-9311 was 18.70% higher than that of 93-11. These results indicate that LSCHL4 had a pleiotropic function. Exploring and pyramiding more high-yield alleles resem- bling LSCHL4 for super rice breeding provides an effective way to achieve new breakthroughs in raising rice yield and generate new ideas for solving the problem of global food safety.