Phytoremediation as a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants is becoming an increasingly important objective in plant research. In this study, biologic...Phytoremediation as a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants is becoming an increasingly important objective in plant research. In this study, biological cycles of five nutrient elements (N, P, K, Ca, and Mg) and eight heavy metal elements (Fe, Cu, Zn, Mn, Cd, Ni, Pb and Co) were examined in young paniculed goldraintree (Koelreuteria paniculata Laxm) and common elaeocarpus (Elaeocarpus decipens) mixed stands in an abandoned mining area. We found that after vegetation restoration in abandoned mining areas, the organic matter and concentrations of nutrient elements were significantly increased and the heavy metal elements were significantly decreased, the annual retention, uptake and return were 75.0, 115.4, and 40.3 kg/hm^2 for nutrient elements, and 1 878.0, 3 231.0 and 1 353.0 g/hm^2 for heavy metal elements, respectively, with the utilization coefficient, cycling coefficient and turnover rate of 0.92, 0.35 and 0.32 for nutrient elements, and 1.24, 0.42 and 1.92 for heavy metal elements, respectively. Our results suggested that the vegetation restoration in abandoned mining areas had significant effects in improving environmental conditions, enhancing soil available nutrients, and ensuring human health.展开更多
基金Supported by the National Natural Science Foundation of China (No. 30571487the Key project of State Forestry Administration(2006-11, 2006-17)+1 种基金the Urban Forest Ecological Key Laboratory of Hunan Province(No. 06FJ3083)and the Platform Construction Project of the Ministry of Science and Technology of China(No. 20021220).
文摘Phytoremediation as a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants is becoming an increasingly important objective in plant research. In this study, biological cycles of five nutrient elements (N, P, K, Ca, and Mg) and eight heavy metal elements (Fe, Cu, Zn, Mn, Cd, Ni, Pb and Co) were examined in young paniculed goldraintree (Koelreuteria paniculata Laxm) and common elaeocarpus (Elaeocarpus decipens) mixed stands in an abandoned mining area. We found that after vegetation restoration in abandoned mining areas, the organic matter and concentrations of nutrient elements were significantly increased and the heavy metal elements were significantly decreased, the annual retention, uptake and return were 75.0, 115.4, and 40.3 kg/hm^2 for nutrient elements, and 1 878.0, 3 231.0 and 1 353.0 g/hm^2 for heavy metal elements, respectively, with the utilization coefficient, cycling coefficient and turnover rate of 0.92, 0.35 and 0.32 for nutrient elements, and 1.24, 0.42 and 1.92 for heavy metal elements, respectively. Our results suggested that the vegetation restoration in abandoned mining areas had significant effects in improving environmental conditions, enhancing soil available nutrients, and ensuring human health.