The fatigue load spectrum and operation life evaluation of key components in the catenary system under the high speed train running condition were investigated.Firstly,based on the catenary model and pantograph model,...The fatigue load spectrum and operation life evaluation of key components in the catenary system under the high speed train running condition were investigated.Firstly,based on the catenary model and pantograph model,the couple dynamic equations of pantograph–catenary were built with the Lagrange’s method;then the dynamic contact force was obtained by the Newmark method at the train speeds of 250,280 and 300 km/h,respectively.Secondly,the finite element model(FEM)of one anchor section’s catenary was built to analyze its transient response under the contact force as train running;then the loading time history of messenger wire base,steady arm,registration tube,oblique cantilever,and straight cantilever were extracted.Finally,the key components’fatigue spectrum was carried out by the rain-flow counting method,and operation life was estimated in consideration of such coefficients,such as stress concentration,shape and dimension,surface treatment.The results show that the fatigue life of the catenary system reduces with the increasing of train speed;specifically,the evaluated fatigue life of the steady arm is shorter than other components.展开更多
The application of electrified railway directly promotes relevant studies on pantograph-catenary interac- tion. With the increase of train running speed, the operating conditions for pantograph and catenary have becom...The application of electrified railway directly promotes relevant studies on pantograph-catenary interac- tion. With the increase of train running speed, the operating conditions for pantograph and catenary have become increasingly complex. This paper reviews the related achievements contributed by groups and institutions around the world. This article specifically focuses on three aspects: The dynamic characteristics of the panto- graph and catenary components, the systems' dynamic properties, and the environmental influences on the pantograph-catenary interaction. In accordance with the existing studies, future research may prioritize the task of identifying the mechanism of contact force variation. This kind of study can be carried out by simplifying the pantograph-catenary interaction into a moving load problem and utilizing the theory of matching mechanical impedance. In addition, developing a computational platform that accommodates environmental interferences and multi-field coupling effects is necessary in order to further explore applications based on fundamental studies.展开更多
基金Project(51175383)supported by the National Natural Science Foundation of China(NSF)
文摘The fatigue load spectrum and operation life evaluation of key components in the catenary system under the high speed train running condition were investigated.Firstly,based on the catenary model and pantograph model,the couple dynamic equations of pantograph–catenary were built with the Lagrange’s method;then the dynamic contact force was obtained by the Newmark method at the train speeds of 250,280 and 300 km/h,respectively.Secondly,the finite element model(FEM)of one anchor section’s catenary was built to analyze its transient response under the contact force as train running;then the loading time history of messenger wire base,steady arm,registration tube,oblique cantilever,and straight cantilever were extracted.Finally,the key components’fatigue spectrum was carried out by the rain-flow counting method,and operation life was estimated in consideration of such coefficients,such as stress concentration,shape and dimension,surface treatment.The results show that the fatigue life of the catenary system reduces with the increasing of train speed;specifically,the evaluated fatigue life of the steady arm is shorter than other components.
基金Acknowledgements The authors are grateful for the support provided by the National Key Research and Development Plan-Specific Project of Advanced Rail Transportation (Grant Nos. 2016YFB1200401-102B and 2016YFBI200506), the National Natural Science Foundation of China (Grant No. 51475391), and the Project of Research and Development of Science and Technology from the China Railway Corporation (Grant No. 2017J008-L).
文摘The application of electrified railway directly promotes relevant studies on pantograph-catenary interac- tion. With the increase of train running speed, the operating conditions for pantograph and catenary have become increasingly complex. This paper reviews the related achievements contributed by groups and institutions around the world. This article specifically focuses on three aspects: The dynamic characteristics of the panto- graph and catenary components, the systems' dynamic properties, and the environmental influences on the pantograph-catenary interaction. In accordance with the existing studies, future research may prioritize the task of identifying the mechanism of contact force variation. This kind of study can be carried out by simplifying the pantograph-catenary interaction into a moving load problem and utilizing the theory of matching mechanical impedance. In addition, developing a computational platform that accommodates environmental interferences and multi-field coupling effects is necessary in order to further explore applications based on fundamental studies.