In this paper, a deterministic delay differential pantograph equation (DDPE) with an unbounded memory is stochastically perturbed by an Ito-type noise. The contribution of white noise to the oscillatory behaviour of...In this paper, a deterministic delay differential pantograph equation (DDPE) with an unbounded memory is stochastically perturbed by an Ito-type noise. The contribution of white noise to the oscillatory behaviour of the new stochastic delay differential pantograph equation (SDDPE) is investigated. It is established that under certain conditions and with a highly positive probability, the new stochastic delay differential pantograph equation has an oscillatory solution influenced by the presence of the noise. This is not possible with the original deterministic system which has a non-oscillatory solution due to the absence of noise.展开更多
This paper is concerned with the superconvergent points of the continuous Galerkin solutions for delay differential equations of pantograph type. We prove the local nodal superconvergence of continuous Galerkin soluti...This paper is concerned with the superconvergent points of the continuous Galerkin solutions for delay differential equations of pantograph type. We prove the local nodal superconvergence of continuous Galerkin solutions under uniform meshes and locate all the superconvergent points based on the supercloseness between the continuous Galerkin solution U and the interpolation Hhu of the exact solution u. The theoretical results are illustrated by numerical examples.展开更多
文摘In this paper, a deterministic delay differential pantograph equation (DDPE) with an unbounded memory is stochastically perturbed by an Ito-type noise. The contribution of white noise to the oscillatory behaviour of the new stochastic delay differential pantograph equation (SDDPE) is investigated. It is established that under certain conditions and with a highly positive probability, the new stochastic delay differential pantograph equation has an oscillatory solution influenced by the presence of the noise. This is not possible with the original deterministic system which has a non-oscillatory solution due to the absence of noise.
基金Acknowledgments. The second author is supported by NSFC (Nos. 11571027, 91430215), by Beijing Nova Program (No. 2151100003150140) and by the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (No. CIT&TCD201504012). The third author is supported by the Natural Science Foundation of Fujian Province of China (No.2013J05015), by NSFC (No.11301437), and by the Fundamental Research ~nds for the Central Universities (No. 20720150004).
文摘This paper is concerned with the superconvergent points of the continuous Galerkin solutions for delay differential equations of pantograph type. We prove the local nodal superconvergence of continuous Galerkin solutions under uniform meshes and locate all the superconvergent points based on the supercloseness between the continuous Galerkin solution U and the interpolation Hhu of the exact solution u. The theoretical results are illustrated by numerical examples.