This paper presents a non-contact measurement of the realistic catenary geometry deviation in the Norwegian railway network through a laser rangefinder.The random geometry deviation is included in the catenary model ...This paper presents a non-contact measurement of the realistic catenary geometry deviation in the Norwegian railway network through a laser rangefinder.The random geometry deviation is included in the catenary model to investigate its effect on the pantograph–catenary interaction.The dispersion of the longitudinal deviation is assumed to follow a Gaussian distribution.A power spectrum density represents the vertical deviation in the contact wire.Based on the Monte Carlo method,several geometry deviation samples are generated and included in the catenary model.A lumped mass pantograph with flexible collectors is employed to reproduce the high-frequency behaviours.The stochastic analysis results indicate that the catenary geometry deviation causes a significant dispersion of the pantograph–catenary interaction response.The contact force standard deviations measured by the inspection vehicle are within the scope of the simulation results.A critical cut-off frequency that covers 1/16 of the dropper interval is suggested to fully describe the effect of the catenary geometry deviation on the contact force.The statistical minimum contact force is recommended to be modified according to the tolerant contact loss rate at high frequency.An unpleasant interaction performance of the pantograph–catenary can be expected at the catenary top speed when the random catenary geometry deviation is included.展开更多
The paper is aimed at developing an optimized design of the pantograph and catenary system with double pantographs at a speed of 350 km/h for the Wuhan-Guangzhou high-speed railway. First, the pantograph and catenary ...The paper is aimed at developing an optimized design of the pantograph and catenary system with double pantographs at a speed of 350 km/h for the Wuhan-Guangzhou high-speed railway. First, the pantograph and catenary system for the Beijing-Tianjin high-speed railway was analyzed to verify whether its design objective could be fulfilled. It shows that the system is not able to satisfy the requirement of a sustainable running speed of 350 km/h. Then a new scheme for the pantograph and catenary system is proposed through optimization and renovation of the structure and parameters of the pantograph and catenary system, including the suspension type of the catenary, tension of the contact wire, and space between two pantographs. Finally, the dynamic performance of the new system was verified by simulation and line testing. The results show that the new scheme of the pantograph and catenary system for the Wuhan- Guangzhou high-speed railway is acceptable, in which the steady contact between the rear pantograph and the catenary at the space of 200 m can be maintained to ensure the current-collection quality. A current collection with double pantographs at a speed of 350 km/h or higher can be achieved.展开更多
A crucial system for the operation of high-speed trains is the pantograph catenary interface as it is the sole responsible to deliver electrical power to the train. Being the catenary a stationary system with a long l...A crucial system for the operation of high-speed trains is the pantograph catenary interface as it is the sole responsible to deliver electrical power to the train. Being the catenary a stationary system with a long lifespan it is also less likely to be redesigned and upgraded than the pantographs that fit the train vehicles. This letter proposes an optimization procedure for the improvement of the contact quality between the pantograph and the catenary solely based on the redesign of the pantograph head suspension characteristics. A pantograph model is defined and validated against experimental dynamic characteristics of existing pantographs. An optimization strategy based on the use of a global optimization method, to find the vicinity of the optimal solution, followed by the use of a deterministic optimization algorithm, to fine tune the optimal solution, is applied here. The spring stiffness, damping characteristics and bow mass are the design variables used for the pantograph optimization. The objective of the optimal problem is the minimization of the standard deviation of the contact force history, which is the most important quantity to define the contact quality. The pantograph head suspension characteristics are allowed to vary within technological realistic limits. It is found that current high-speed railway pantographs have a limited potential for mechanical improvements, not exceeding 10% 15% on the decrease of the standard deviation of the contact force. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301306]展开更多
A good contact between the pantograph and catenary is critically important for the working reliability of electric trains, while the basic understanding on the electrical contact evolution during the pantograph--caten...A good contact between the pantograph and catenary is critically important for the working reliability of electric trains, while the basic understanding on the electrical contact evolution during the pantograph--catenary system working is still ambiguous so far. In this paper, the evolution of electric contact was studied in respects of the contact resistance, temperature rise, and microstructure variation, based on a home-made pantograph-catenary simulation system. Pure carbon strips and copper alloy contact wires were used, and the experimental electrical current, sliding speed, and normal force were set as 80 A, 30 km/h, and 80 N, respectively. The contact resistance presented a fluctuation without obvious regularity, concentrating in the region of 25 and 50 mf~. Temperature rise of the contact point experienced a fast increase at the first several minutes and finally reached a steady state. The surface damage of carbon trips in microstructure analysis revealed a complicated interaction of the sliding friction, joule heating, and arc erosion.展开更多
As the unique power entrance,the pantograph-catenary electrical contact system maintains the efficiency and reliability of power transmission for the high-speed train.Along with the fast development of high-speed rail...As the unique power entrance,the pantograph-catenary electrical contact system maintains the efficiency and reliability of power transmission for the high-speed train.Along with the fast development of high-speed railways all over the world,some commercialized lines are built for covering the remote places under harsh environment,especially in China;these environmental elements including wind,sand,rain,thunder,ice and snow need to be considered during the design of the pantograph-catenary system.The pantograph-catenary system includes the pantograph,the contact wire and the interface—pantograph slide.As the key component,this pantograph slide plays a critical role in reliable power transmission under dynamic condition.The fundamental material characteristics of the pantograph slide and contact wire such as electrical conductivity,impact resistance,wear resistance,etc.,directly determine the sliding electrical contact performance of the pantograph-catenary system;meanwhile,different detection methods of the pantograph-catenary system are crucial for the reliability of service and maintenance.In addition,the challenges brought from extreme operational conditions are discussed,taking the Sichuan-Tibet Railway currently under construction as a special example with the high-altitude climate.The outlook for developing the ultra-high-speed train equipped with the novel pantograph-catenary system which can address the harsher operational environment is also involved.This paper has provided a comprehensive review of the high-speed railway pantograph-catenary systems,including its progress,challenges,outlooks in the history and future.展开更多
Pantograph-catenary contact force provides the main basis for evaluation of current quality collection; however,the pantograph-catenary contact force is largely affected by the catenary irregularities.To analyze the c...Pantograph-catenary contact force provides the main basis for evaluation of current quality collection; however,the pantograph-catenary contact force is largely affected by the catenary irregularities.To analyze the correlated relationship between catenary irregularities and pantograph-catenary contact force,a method based on nonlinear auto-regressive with exogenous input(NARX) neural networks was developed.First,to collect the test data of catenary irregularities and contact force,the pantograph/catenary dynamics model was established and dynamic simulation was conducted using MATLAB/Simulink.Second,catenary irregularities were used as the input to NARX neural network and the contact force was determined as output of the NARX neural network,in which the neural network was trained by an improved training mechanism based on the regularization algorithm.The simulation results show that the testing error and correlation coefficient are 0.1100 and 0.8029,respectively,and the prediction accuracy is satisfactory.And the comparisons with other algorithms indicate the validity and superiority of the proposed approach.展开更多
With the continuous increase of train speed,undulations of catenary and vibrations of the pantograph head result in generating pantograph- catenary arc frequently,intensifying the abrasion between pantograph strip and...With the continuous increase of train speed,undulations of catenary and vibrations of the pantograph head result in generating pantograph- catenary arc frequently,intensifying the abrasion between pantograph strip and catenary wire,which has seriously influenced the current collection and safety of electric multi units(EMU). It is necessary to study the pantographcatenary arc in immediately. Some researchers develop a few pantograph- catenary arc testing equipment,which couldn’t really reflect the operating condition of pantograph-catenary system. In this paper,the pantograph-catenary arc test apparatus was developed,which simulated the flexible and straight contact of pantograph strip and catenary wire,based on the coupling relationship between pantograph and catenary. The equipment was used to research the electrical parameters of the pantograph-catenary arc and the dynamic contact resistance.展开更多
Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approx...Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approximation without considering aperiodic electromagnetic crosstalk poses challenges for catenary optical devices to reach their performance limits.Here,perfect control of both local geometric and propagation phases is realized through field-driven optimization,in which the field distribution is calculated under real boundary conditions.Different from other optimization methods requiring a mass of iterations,the proposed design method requires less than ten iterations to get the efficiency close to the optimal value.Based on the library of shape-optimized catenary structures,centimeter-scale devices can be designed in ten seconds,with the performance improved by ~15%.Furthermore,this method has the ability to extend catenary-like continuous structures to arbitrary polarization,including both linear and elliptical polarizations,which is difficult to achieve with traditional design methods.It provides a way for the development of catenary optics and serves as a potent tool for constructing high-performance optical devices.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant ...Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant challenges in maintaining consistent current collection performance as the pantograph aerodynamic profile,and thus aerodynamic load changes significantly with operational height.This research aims to analyse the global flow characteristics and aerodynamic forces acting on individual components of an HSX pantograph operating in different configurations and orientations,such that the results can be combined with multibody simulations to obtain accurate dynamic insight into contact forces.Specifically,computational fluid dynamics simulations are used to investigate the pantograph component loads in a representative setting,such as that of the recessed cavity on a Class 800 train.From an aerodynamic perspective,this study indicates that the total drag force acting on non-fixed components of the pantograph is larger for the knuckle-leading orientation rather than the knuckle-trailing,although the difference between the two is found to reduce with increasing pantograph extension.Combining the aerodynamic loads acting on individual components with multibody tools allows for realistic dynamic insight into the pantograph behaviour.The results obtained show how considering aerodynamic forces enhance the realism of the models,leading to behaviour of the pantograph-catenary contact forces closely matching that seen in experimental tests.展开更多
A pantograph serves as a vital device for the collection of electricity in trains.However,its aerodynamic resistance can limit the train’s running speed.As installing fairings around the pantograph is known to effect...A pantograph serves as a vital device for the collection of electricity in trains.However,its aerodynamic resistance can limit the train’s running speed.As installing fairings around the pantograph is known to effectively reduce the resistance,in this study,different fairing lengths are considered and the related aerodynamic performances of pantograph are assessed.In particular,this is accomplished through numerical simulations based on the k-ωShear Stress Transport(SST)two-equation turbulence model.The results indicate that the fairing diminishes the direct impact of high-speed airflow on the pantograph,thereby reducing its aerodynamic resistance.However,it also induces interferences in the flow field around the train,leading to variations in the aerodynamic resistance and lift of train components.It is shown that a maximum reduction of 56.52%in pantograph aerodynamic resistance and a peak decrease of 3.38%in total train aerodynamic resistance can be achieved.展开更多
The technology of pantograph sinking in the cavity is generally adopted in the new generation of high-speed trains in China for aerodynamic noise reduction in this region. This study takes a high-speed train with a 4-...The technology of pantograph sinking in the cavity is generally adopted in the new generation of high-speed trains in China for aerodynamic noise reduction in this region. This study takes a high-speed train with a 4-car formation and a pantograph as the research object and compares the aerodynamic acoustic performance of two scale models, 1/8 and 1/1, using large eddy simulation and Ffowcs Williams–Hawkings integral equation. It is found that there is no direct scale similarity between their aeroacoustic performance. The 1/1 model airflow is separated at the leading edge of the panhead and reattached to the panhead, and its vortex shedding Strouhal number(St) is 0.17. However, the 1/8 model airflow is separated directly at the leading edge of the panhead, and its St is 0.13. The cavity's vortex shedding frequency is in agreement with that calculated by the Rooster empirical formula. The two scale models exhibit some similar characteristics in distribution of sound source energy, but the energy distribution of the 1/8 model is more concentrated in the middle and lower regions. The contribution rates of their middle and lower regions to the radiated noise in the two models are 27.3% and 87.2%, respectively. The peak frequencies of the radiated noise from the 1/1 model are 307 and 571 Hz. The 307 Hz is consistent with the frequency of panhead vortex shedding, and the 571 Hz is more likely to be the result of the superposition of various components. In contrast, the peak frequencies of the radiated noise from the 1/8 scale model are 280 and 1970 Hz. The 280 Hz comes from the shear layer oscillation between the cavity and the bottom frame, and the 1970 Hz is close to the frequency at which the panhead vortex sheds. This shows that the scaled model results need to be corrected before applying to the full-scale model.展开更多
The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interfe...The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interferences.This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary based on an improved Kalman filter(KF).The proposed method focuses on modifying the priori state estimate covariance and measurement error covariance of the KF to enhance accuracy in complex environments.By comparing the optimal displacement value with the theoretically calculated value based on the thermal expansion effect of metals,it becomes possible to ascertain the aging status of the catenary.To improve prediction accuracy,a railway catenary aging prediction model is constructed by integrating the Takagi-Sugeno(T-S)fuzzy neural network(FNN)and KF.In this model,an adaptive training method is introduced,allowing the FNN to use fewer fuzzy rules.The inputs of the model include time,temperature,and historical displacement,while the output is the predicted displacement.Furthermore,the KF is enhanced by modifying its prior state estimate covariance and measurement error covariance.These modifications contribute to more accurate predictions.Lastly,a low-power experimental platform based on FPGA is implemented to verify the effectiveness of the proposed method.The test results demonstrate that the proposed method outperforms the compared method,showcasing its superior performance.展开更多
Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to s...Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches.展开更多
The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the...The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the kinematic and dynamic analysis of the lifting system,the elastic catenary mod-el considering the elasticity and mass of the flexible rope is established,and the effect of the deform-ation of the flexible rope on the position and posture of the suspended object is analyzed.According to the deformation of flexible rope,a real-time trajectory compensation method is proposed based on the compensation principle of position and posture.Under the lifting task of the low-speed move-ment,this is compared with that of the system which neglects the deformation of the flexible rope.The trajectoy of the lifting system considering the deformation of flexible rope.The results show that the mass and elasticity of the flexible rope can not be neglected.Meanwhile,the proposed trajectory compensation method can improve the movement accuracy of the lifting system,which verifies the ef-fectiveness of this compensation method.The research results provide the basis for trajectory plan-ning and coordinated control of the lifting system。展开更多
The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of t...The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of the current-carrying ring.Due to the low intelligence and poor accuracy of the dropper fault detection network,an improved fully convolutional one-stage(FCOS)object detection network was proposed to improve the detection capability of the dropper condition.Firstly,by adjusting the parameterαin the network focus loss function,the problem of positive and negative sample imbalance in the network training process was eliminated.Secondly,the generalized intersection over union(GIoU)calculation was introduced to enhance the network’s ability to recognize the relative spatial positions of the prediction box and the bounding box during the regression calculation.Finally,the improved network was used to detect the status of dropper pictures.The detection speed was 150 sheets per millisecond,and the MAP of different status detection was 0.9512.Through the simulation comparison with other object detection networks,it was proved that the improved FCOS network had advantages in both detection time and accuracy,and could identify the state of dropper accurately.展开更多
作为高铁牵引供电系统的重要组成部分,接触网系统承担着向动车组传输电能的重要功能.实际工程运营表明,受弓网交互产生的持续冲击以及外部环境的影响,接触网支撑部件可能会出现“松、脱、断、裂”等缺陷,导致接触网结构可靠性下降,严重...作为高铁牵引供电系统的重要组成部分,接触网系统承担着向动车组传输电能的重要功能.实际工程运营表明,受弓网交互产生的持续冲击以及外部环境的影响,接触网支撑部件可能会出现“松、脱、断、裂”等缺陷,导致接触网结构可靠性下降,严重影响接触网系统稳定运行.因此,及时精确定位接触网支撑部件(CSCs),对保障高铁安全运行和完善接触网检修维护策略具有重大意义.然而,CSCs的检测通常面临着零部件种类多、尺度差异大、部分零部件微小的问题.针对以上问题,本文提出一种基于多尺度融合金字塔焦点网络的接触网零部件检测算法,将平衡模块和特征金字塔模块相结合,提高对小目标的检测性能.首先,设计了可分离残差金字塔聚合模块(SRPAM),用于优化模型多尺度特征提取能力、扩大感受野,缓解CSCs检测的多尺度问题;其次,设计了一种基于平衡特征金字塔的路径聚合网络(PA-BFPN),用于提升跨层特征融合效率和小目标检测性能.最后,通过对比试验、可视化实验和消融实验证明了所提方法的有效性和优越性.其中,所提的MFPFCOS在CSCs数据集上的检测精度(mAP)能够在达到48.6%的同时,实现30的FLOPs(Floating point operations per second),表明所提方法能够在检测精度和检测速度之间保持良好的平衡.展开更多
Steel catenary risers (SCR) have become an enabling technology for deepwater environments. A comprehensive review was conducted on recent research that examined interactions between deepwater steel catenary risers a...Steel catenary risers (SCR) have become an enabling technology for deepwater environments. A comprehensive review was conducted on recent research that examined interactions between deepwater steel catenary risers and soft clay seabeds. This included the STRIDE (steel risers in deepwater environments) and CARISIMA (catenary riser soil interaction model for global riser analysis) joint jndustry jrogram's test data as well as information from existing papers.展开更多
文摘This paper presents a non-contact measurement of the realistic catenary geometry deviation in the Norwegian railway network through a laser rangefinder.The random geometry deviation is included in the catenary model to investigate its effect on the pantograph–catenary interaction.The dispersion of the longitudinal deviation is assumed to follow a Gaussian distribution.A power spectrum density represents the vertical deviation in the contact wire.Based on the Monte Carlo method,several geometry deviation samples are generated and included in the catenary model.A lumped mass pantograph with flexible collectors is employed to reproduce the high-frequency behaviours.The stochastic analysis results indicate that the catenary geometry deviation causes a significant dispersion of the pantograph–catenary interaction response.The contact force standard deviations measured by the inspection vehicle are within the scope of the simulation results.A critical cut-off frequency that covers 1/16 of the dropper interval is suggested to fully describe the effect of the catenary geometry deviation on the contact force.The statistical minimum contact force is recommended to be modified according to the tolerant contact loss rate at high frequency.An unpleasant interaction performance of the pantograph–catenary can be expected at the catenary top speed when the random catenary geometry deviation is included.
文摘The paper is aimed at developing an optimized design of the pantograph and catenary system with double pantographs at a speed of 350 km/h for the Wuhan-Guangzhou high-speed railway. First, the pantograph and catenary system for the Beijing-Tianjin high-speed railway was analyzed to verify whether its design objective could be fulfilled. It shows that the system is not able to satisfy the requirement of a sustainable running speed of 350 km/h. Then a new scheme for the pantograph and catenary system is proposed through optimization and renovation of the structure and parameters of the pantograph and catenary system, including the suspension type of the catenary, tension of the contact wire, and space between two pantographs. Finally, the dynamic performance of the new system was verified by simulation and line testing. The results show that the new scheme of the pantograph and catenary system for the Wuhan- Guangzhou high-speed railway is acceptable, in which the steady contact between the rear pantograph and the catenary at the space of 200 m can be maintained to ensure the current-collection quality. A current collection with double pantographs at a speed of 350 km/h or higher can be achieved.
基金supported by the projects SMARTRACKfunded by FCT with the contract PTDC/EMEPME/101419/2008 and PANTOTRAIN+1 种基金funded by the EC with the contract SC8-GA-2009-234015led by UNIFE
文摘A crucial system for the operation of high-speed trains is the pantograph catenary interface as it is the sole responsible to deliver electrical power to the train. Being the catenary a stationary system with a long lifespan it is also less likely to be redesigned and upgraded than the pantographs that fit the train vehicles. This letter proposes an optimization procedure for the improvement of the contact quality between the pantograph and the catenary solely based on the redesign of the pantograph head suspension characteristics. A pantograph model is defined and validated against experimental dynamic characteristics of existing pantographs. An optimization strategy based on the use of a global optimization method, to find the vicinity of the optimal solution, followed by the use of a deterministic optimization algorithm, to fine tune the optimal solution, is applied here. The spring stiffness, damping characteristics and bow mass are the design variables used for the pantograph optimization. The objective of the optimal problem is the minimization of the standard deviation of the contact force history, which is the most important quantity to define the contact quality. The pantograph head suspension characteristics are allowed to vary within technological realistic limits. It is found that current high-speed railway pantographs have a limited potential for mechanical improvements, not exceeding 10% 15% on the decrease of the standard deviation of the contact force. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301306]
基金supported by the National Natural Science Foundation of China (Nos. U1234202 and 51577158)the National Science Foundation for Distinguished Young Scholars of China (No. 51325704)the Fundamental Research Funds for the Central Universities (No. A0920502051505-19)
文摘A good contact between the pantograph and catenary is critically important for the working reliability of electric trains, while the basic understanding on the electrical contact evolution during the pantograph--catenary system working is still ambiguous so far. In this paper, the evolution of electric contact was studied in respects of the contact resistance, temperature rise, and microstructure variation, based on a home-made pantograph-catenary simulation system. Pure carbon strips and copper alloy contact wires were used, and the experimental electrical current, sliding speed, and normal force were set as 80 A, 30 km/h, and 80 N, respectively. The contact resistance presented a fluctuation without obvious regularity, concentrating in the region of 25 and 50 mf~. Temperature rise of the contact point experienced a fast increase at the first several minutes and finally reached a steady state. The surface damage of carbon trips in microstructure analysis revealed a complicated interaction of the sliding friction, joule heating, and arc erosion.
基金supported by the National Natural Science Foundation of China(Nos.U19A20105,51837009,51807167,51922090,U1966602 and 52077182)the Scientific and Technological Funds for Young Scientists of Sichuan(No.2019JDJQ0019)。
文摘As the unique power entrance,the pantograph-catenary electrical contact system maintains the efficiency and reliability of power transmission for the high-speed train.Along with the fast development of high-speed railways all over the world,some commercialized lines are built for covering the remote places under harsh environment,especially in China;these environmental elements including wind,sand,rain,thunder,ice and snow need to be considered during the design of the pantograph-catenary system.The pantograph-catenary system includes the pantograph,the contact wire and the interface—pantograph slide.As the key component,this pantograph slide plays a critical role in reliable power transmission under dynamic condition.The fundamental material characteristics of the pantograph slide and contact wire such as electrical conductivity,impact resistance,wear resistance,etc.,directly determine the sliding electrical contact performance of the pantograph-catenary system;meanwhile,different detection methods of the pantograph-catenary system are crucial for the reliability of service and maintenance.In addition,the challenges brought from extreme operational conditions are discussed,taking the Sichuan-Tibet Railway currently under construction as a special example with the high-altitude climate.The outlook for developing the ultra-high-speed train equipped with the novel pantograph-catenary system which can address the harsher operational environment is also involved.This paper has provided a comprehensive review of the high-speed railway pantograph-catenary systems,including its progress,challenges,outlooks in the history and future.
基金Project(20120009110035)supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2011BAG01B05)supported by National Key Technology Research and Development Program of ChinaProject(2011AA110501)supported by National High-tech Research and Development Program of China
文摘Pantograph-catenary contact force provides the main basis for evaluation of current quality collection; however,the pantograph-catenary contact force is largely affected by the catenary irregularities.To analyze the correlated relationship between catenary irregularities and pantograph-catenary contact force,a method based on nonlinear auto-regressive with exogenous input(NARX) neural networks was developed.First,to collect the test data of catenary irregularities and contact force,the pantograph/catenary dynamics model was established and dynamic simulation was conducted using MATLAB/Simulink.Second,catenary irregularities were used as the input to NARX neural network and the contact force was determined as output of the NARX neural network,in which the neural network was trained by an improved training mechanism based on the regularization algorithm.The simulation results show that the testing error and correlation coefficient are 0.1100 and 0.8029,respectively,and the prediction accuracy is satisfactory.And the comparisons with other algorithms indicate the validity and superiority of the proposed approach.
基金supporting program of the National Science Foundation for Distinguished Young Scholars of China(Project No.51325704)the State Key Program of National Natural Science of China(Project No.U1234202)。
文摘With the continuous increase of train speed,undulations of catenary and vibrations of the pantograph head result in generating pantograph- catenary arc frequently,intensifying the abrasion between pantograph strip and catenary wire,which has seriously influenced the current collection and safety of electric multi units(EMU). It is necessary to study the pantographcatenary arc in immediately. Some researchers develop a few pantograph- catenary arc testing equipment,which couldn’t really reflect the operating condition of pantograph-catenary system. In this paper,the pantograph-catenary arc test apparatus was developed,which simulated the flexible and straight contact of pantograph strip and catenary wire,based on the coupling relationship between pantograph and catenary. The equipment was used to research the electrical parameters of the pantograph-catenary arc and the dynamic contact resistance.
基金financial supports from the National Natural Science Foundation of China (No.62175242,U20A20217,61975210,and 62305345)China Postdoctoral Science Foundation (2021T140670)。
文摘Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approximation without considering aperiodic electromagnetic crosstalk poses challenges for catenary optical devices to reach their performance limits.Here,perfect control of both local geometric and propagation phases is realized through field-driven optimization,in which the field distribution is calculated under real boundary conditions.Different from other optimization methods requiring a mass of iterations,the proposed design method requires less than ten iterations to get the efficiency close to the optimal value.Based on the library of shape-optimized catenary structures,centimeter-scale devices can be designed in ten seconds,with the performance improved by ~15%.Furthermore,this method has the ability to extend catenary-like continuous structures to arbitrary polarization,including both linear and elliptical polarizations,which is difficult to achieve with traditional design methods.It provides a way for the development of catenary optics and serves as a potent tool for constructing high-performance optical devices.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.
基金support of RSSB to this work via the project RSSB/COF-UOH-49 is greatly appreciated.The authors also acknowledge the support by FCT,through IDMEC,under LAETA,project UIDB/50022/2020.
文摘Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant challenges in maintaining consistent current collection performance as the pantograph aerodynamic profile,and thus aerodynamic load changes significantly with operational height.This research aims to analyse the global flow characteristics and aerodynamic forces acting on individual components of an HSX pantograph operating in different configurations and orientations,such that the results can be combined with multibody simulations to obtain accurate dynamic insight into contact forces.Specifically,computational fluid dynamics simulations are used to investigate the pantograph component loads in a representative setting,such as that of the recessed cavity on a Class 800 train.From an aerodynamic perspective,this study indicates that the total drag force acting on non-fixed components of the pantograph is larger for the knuckle-leading orientation rather than the knuckle-trailing,although the difference between the two is found to reduce with increasing pantograph extension.Combining the aerodynamic loads acting on individual components with multibody tools allows for realistic dynamic insight into the pantograph behaviour.The results obtained show how considering aerodynamic forces enhance the realism of the models,leading to behaviour of the pantograph-catenary contact forces closely matching that seen in experimental tests.
基金the National Natural Science Foundation of China(12172308,52072319)the Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘A pantograph serves as a vital device for the collection of electricity in trains.However,its aerodynamic resistance can limit the train’s running speed.As installing fairings around the pantograph is known to effectively reduce the resistance,in this study,different fairing lengths are considered and the related aerodynamic performances of pantograph are assessed.In particular,this is accomplished through numerical simulations based on the k-ωShear Stress Transport(SST)two-equation turbulence model.The results indicate that the fairing diminishes the direct impact of high-speed airflow on the pantograph,thereby reducing its aerodynamic resistance.However,it also induces interferences in the flow field around the train,leading to variations in the aerodynamic resistance and lift of train components.It is shown that a maximum reduction of 56.52%in pantograph aerodynamic resistance and a peak decrease of 3.38%in total train aerodynamic resistance can be achieved.
基金supported by the National Natural Science Foundation of China (No. 52272363)the Key Laboratory of Aerodynamic Noise Control (No. ANCL20200302),Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province。
文摘The technology of pantograph sinking in the cavity is generally adopted in the new generation of high-speed trains in China for aerodynamic noise reduction in this region. This study takes a high-speed train with a 4-car formation and a pantograph as the research object and compares the aerodynamic acoustic performance of two scale models, 1/8 and 1/1, using large eddy simulation and Ffowcs Williams–Hawkings integral equation. It is found that there is no direct scale similarity between their aeroacoustic performance. The 1/1 model airflow is separated at the leading edge of the panhead and reattached to the panhead, and its vortex shedding Strouhal number(St) is 0.17. However, the 1/8 model airflow is separated directly at the leading edge of the panhead, and its St is 0.13. The cavity's vortex shedding frequency is in agreement with that calculated by the Rooster empirical formula. The two scale models exhibit some similar characteristics in distribution of sound source energy, but the energy distribution of the 1/8 model is more concentrated in the middle and lower regions. The contribution rates of their middle and lower regions to the radiated noise in the two models are 27.3% and 87.2%, respectively. The peak frequencies of the radiated noise from the 1/1 model are 307 and 571 Hz. The 307 Hz is consistent with the frequency of panhead vortex shedding, and the 571 Hz is more likely to be the result of the superposition of various components. In contrast, the peak frequencies of the radiated noise from the 1/8 scale model are 280 and 1970 Hz. The 280 Hz comes from the shear layer oscillation between the cavity and the bottom frame, and the 1970 Hz is close to the frequency at which the panhead vortex sheds. This shows that the scaled model results need to be corrected before applying to the full-scale model.
基金supported by the Science and Technology Research Project of Henan Province (No.222102210087)the Science and Technology Research Project of Henan Province (No.222102220102).
文摘The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interferences.This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary based on an improved Kalman filter(KF).The proposed method focuses on modifying the priori state estimate covariance and measurement error covariance of the KF to enhance accuracy in complex environments.By comparing the optimal displacement value with the theoretically calculated value based on the thermal expansion effect of metals,it becomes possible to ascertain the aging status of the catenary.To improve prediction accuracy,a railway catenary aging prediction model is constructed by integrating the Takagi-Sugeno(T-S)fuzzy neural network(FNN)and KF.In this model,an adaptive training method is introduced,allowing the FNN to use fewer fuzzy rules.The inputs of the model include time,temperature,and historical displacement,while the output is the predicted displacement.Furthermore,the KF is enhanced by modifying its prior state estimate covariance and measurement error covariance.These modifications contribute to more accurate predictions.Lastly,a low-power experimental platform based on FPGA is implemented to verify the effectiveness of the proposed method.The test results demonstrate that the proposed method outperforms the compared method,showcasing its superior performance.
文摘Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches.
基金the National Natural Science Foundation of China(No.51965032)the Natural Science Foundation of Gansu Province of China(No.22JR5RA319)+1 种基金the Science and Technology Foundation of Gansu Province of China(No.21YF5WA060)the Excellent Doctoral Student Foundation of Gansu Province of China(No.23JRRA842).
文摘The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the kinematic and dynamic analysis of the lifting system,the elastic catenary mod-el considering the elasticity and mass of the flexible rope is established,and the effect of the deform-ation of the flexible rope on the position and posture of the suspended object is analyzed.According to the deformation of flexible rope,a real-time trajectory compensation method is proposed based on the compensation principle of position and posture.Under the lifting task of the low-speed move-ment,this is compared with that of the system which neglects the deformation of the flexible rope.The trajectoy of the lifting system considering the deformation of flexible rope.The results show that the mass and elasticity of the flexible rope can not be neglected.Meanwhile,the proposed trajectory compensation method can improve the movement accuracy of the lifting system,which verifies the ef-fectiveness of this compensation method.The research results provide the basis for trajectory plan-ning and coordinated control of the lifting system。
基金supported by Natural Science Foundation of Gansu Province(No.20JR10RA216)。
文摘The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of the current-carrying ring.Due to the low intelligence and poor accuracy of the dropper fault detection network,an improved fully convolutional one-stage(FCOS)object detection network was proposed to improve the detection capability of the dropper condition.Firstly,by adjusting the parameterαin the network focus loss function,the problem of positive and negative sample imbalance in the network training process was eliminated.Secondly,the generalized intersection over union(GIoU)calculation was introduced to enhance the network’s ability to recognize the relative spatial positions of the prediction box and the bounding box during the regression calculation.Finally,the improved network was used to detect the status of dropper pictures.The detection speed was 150 sheets per millisecond,and the MAP of different status detection was 0.9512.Through the simulation comparison with other object detection networks,it was proved that the improved FCOS network had advantages in both detection time and accuracy,and could identify the state of dropper accurately.
文摘作为高铁牵引供电系统的重要组成部分,接触网系统承担着向动车组传输电能的重要功能.实际工程运营表明,受弓网交互产生的持续冲击以及外部环境的影响,接触网支撑部件可能会出现“松、脱、断、裂”等缺陷,导致接触网结构可靠性下降,严重影响接触网系统稳定运行.因此,及时精确定位接触网支撑部件(CSCs),对保障高铁安全运行和完善接触网检修维护策略具有重大意义.然而,CSCs的检测通常面临着零部件种类多、尺度差异大、部分零部件微小的问题.针对以上问题,本文提出一种基于多尺度融合金字塔焦点网络的接触网零部件检测算法,将平衡模块和特征金字塔模块相结合,提高对小目标的检测性能.首先,设计了可分离残差金字塔聚合模块(SRPAM),用于优化模型多尺度特征提取能力、扩大感受野,缓解CSCs检测的多尺度问题;其次,设计了一种基于平衡特征金字塔的路径聚合网络(PA-BFPN),用于提升跨层特征融合效率和小目标检测性能.最后,通过对比试验、可视化实验和消融实验证明了所提方法的有效性和优越性.其中,所提的MFPFCOS在CSCs数据集上的检测精度(mAP)能够在达到48.6%的同时,实现30的FLOPs(Floating point operations per second),表明所提方法能够在检测精度和检测速度之间保持良好的平衡.
文摘Steel catenary risers (SCR) have become an enabling technology for deepwater environments. A comprehensive review was conducted on recent research that examined interactions between deepwater steel catenary risers and soft clay seabeds. This included the STRIDE (steel risers in deepwater environments) and CARISIMA (catenary riser soil interaction model for global riser analysis) joint jndustry jrogram's test data as well as information from existing papers.