The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of t...The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.展开更多
In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curv...In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curves exhibiting indications of sliding can be categorized into three types:B-type,D-type,and r-type.The position of the slip surface is typically determined by identifying the depth corresponding to the point of maximum displacement mutation.However,this method is sensitive to the interval of measurement points and the observation scale of the coordinate axes and suffers from unclear sliding surfaces and uncertain values.Based on the variation characteristics of these diagonal curves,we classified the landslide into three components:the sliding body,the sliding interval,and the immobile body.Moreover,three different generalization models were established to analyze the relationships between the curve form and the slip surface location based on different physical indicators such as displacement rate,relative displacement,and acceleration.The results show that the displacement rate curves of an r-type slope exhibit a clustering feature in the sliding interval,and by solving for the depth of discrete points within the step phase,it is possible to determine the location of the slip surface.On the other hand,D-type slopes have inflection points in the relative displacement curve located at the slip surface.The acceleration curves of B-type slopes exhibit clustering characteristics during the sliding interval,while the scattered acceleration data demonstrate wandering characteristics.Consequently,the slip surface location can be revealed by solving the depth corresponding to the maximum acceleration with cubic spline interpolation.The approach proposed in this paper was applied to the monitoring data of a landslide in Yunnan Province,China.The results indicate that our approach can accurately identify the slip surface location and enable computability of its position,thereby enhancing applicability and reliability of the deep-hole displacement monitoring data.展开更多
Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ...Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.展开更多
The FCSE controlling equation of pinned thinwalled curve box was derived and the indeterminate problem of continuous thin-walled curve box with diaphragm was solved based on flexibility theory. With Bayesian statistic...The FCSE controlling equation of pinned thinwalled curve box was derived and the indeterminate problem of continuous thin-walled curve box with diaphragm was solved based on flexibility theory. With Bayesian statistical theory,dynamic Bayesian error function of displacement parameters of indeterminate curve box was founded. The corresponding formulas of dynamic Bayesian expectation and variance were deduced. Combined with one-dimensional Fibonacci automatic search scheme of optimal step size,the Powell optimization theory was utilized to research the stochastic identification of displacement parameters of indeterminate thin-walled curve box. Then the identification steps were presented in detail and the corresponding calculation procedure was compiled. Through some classic examples,it is obtained that stochastic performances of systematic parameters and systematic responses are simultaneously deliberated in dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step size is solved by adopting Fibonacci search method. And the Powell identification of displacement parameters of indeterminate thin-walled curve box has satisfied numerical stability and convergence,which demonstrates that the presented method and the compiled procedure are correct and reliable.During parameters鈥?iterative processes,the Powell theory is irrelevant with the calculation of finite curve strip element(FCSE) partial differentiation,which proves high computation effciency of the studied method.展开更多
The finite strip controlling equation of pinned curve box was deduced on basis of Novozhilov theory and with flexibility method, and the problem of continuous curve box was resolved. Dynamic Bayesian error function of...The finite strip controlling equation of pinned curve box was deduced on basis of Novozhilov theory and with flexibility method, and the problem of continuous curve box was resolved. Dynamic Bayesian error function of displacement parameters of continuous curve box was found. The corresponding formulas of dynamic Bayesian expectation and variance were derived. After the method of solving the automatic search of step length was put forward, the optimization estimation computing formulas were also obtained by adapting conjugate gradient method. Then the steps of dynamic Bayesian estimation were given in detail. Through analysis of a Classic example, the criterion of judging the precision of the known information is gained as well as some other important conclusions about dynamic Bayesian stochastic estimation of displacement parameters of continuous curve box.展开更多
In order to identify the uncertain parameters of a bolted joint finite element model,a simple and applicable way of parameter identification is introduced.By utilizing numerical simulation with the Abaqus software and...In order to identify the uncertain parameters of a bolted joint finite element model,a simple and applicable way of parameter identification is introduced.By utilizing numerical simulation with the Abaqus software and experimental investigation with the MTS material testing system,the tangential force-displacement curves that reflect the characteristics of the bolted joint were acquired.On the basis of this,by employing the response surface methodology(RSM)and genetic algorithms(GAs),parameters in the FEM model were identified.The force-displacement curves by both virtual and experimental approaches are well correlated at the end.This phenomenon-based parameter identification method may help facilitate precise prediction of complex jointed connection structures.展开更多
The present paper deals with the problem of assessing the local influence in a growth curve model with Rao's simple covariance structure. Based on the likelihood displacement,the curvature measure is employed to e...The present paper deals with the problem of assessing the local influence in a growth curve model with Rao's simple covariance structure. Based on the likelihood displacement,the curvature measure is employed to evaluate the effects of some minor perturbations on the statistical inference, thus leading to the large curvature direction, which is the most critical diagnostic statistic in the context of the local influence analysis. As an application, the common covariance-weighted perturbation scheme is thoroughly considered.展开更多
The classification method of relative permeability curves is rarely reported, when relative permeability curves are applied;if the multiple relative permeability curves are normalized directly, but not classified, the...The classification method of relative permeability curves is rarely reported, when relative permeability curves are applied;if the multiple relative permeability curves are normalized directly, but not classified, the calculated result maybe cause a large error. For example, the relationship curve between oil displacement efficiency and water cut, which derived from the relative permeability curve in LD oilfield is uncertain in the shape of low water cut stage. If being directly normalized, the result of the interpretation of the water flooded zone is very high. In this study, two problems were solved: 1) The mathematical equation of the relationship between oil displacement efficiency and water cut was deduced, and repaired the lost data of oil displacement efficiency and water cut curve, which solve the problem of uncertain curve shape. After analysis, the reason why the curve is not available is that relative permeability curves are not classified and optimized;2) Two kinds of classification and evaluation methods of relative permeability curve were put forward, the direct evaluation method and the analogy method;it can get the typical relative permeability curve by identifying abnormal curve.展开更多
Formulae for determining Green strain of an initially curved and twisted rod with circular cross-sections are derived by using the natural (curvilinear) coordinate system. Finite element analyses are performed for the...Formulae for determining Green strain of an initially curved and twisted rod with circular cross-sections are derived by using the natural (curvilinear) coordinate system. Finite element analyses are performed for the flexural buckling of initially curved and twisted thin rods under simultaneous action of axial force and torque. Numerical examples demonstrate that the given formulae are correcte. Some numerical results are compared with existing analytical solutions and data obtained by commercial FE software. The convergence of the proposed curved element is better than that of elements in the commercial FE software. It is shown that good accuracy and convergency are achieved by solving three-dimensional problems.展开更多
The need to have naval units ever faster pushed the ship design to design hull shapes with increasingly higher performance thanks to the use of lightweight materials such as aluminum, and more powerful engines, etc., ...The need to have naval units ever faster pushed the ship design to design hull shapes with increasingly higher performance thanks to the use of lightweight materials such as aluminum, and more powerful engines, etc., but without substantially modifying the traditional forms of hull. The hull patented Monotricat high hydrodynamic efficiency and energy saving it represents an evolution of the traditional architectures of the hulls, as its shape is adapted to recover wave formation engendered from the bow and sprays associated with it so as to reduce the resistance to the benefit of the speed, and navigating in displacement at speeds of planing hulls with an efficiency of about 20%. The patented hull Monotricat represents the overcoming of distinction between displacement and planing hulls, because, unlike previous solutions, the hull conventionally called Monotricat is the first displacement hull that can navigate at both displacement and planning speeds, with a resistance curve almost straight, maintaining the characteristics of a displacement hull, since it combines the characteristics of displacement and planning hull. It presents an innovative architecture that could be defined as a hybrid between a monohull and catamaran, navigating on spray self-produced. The combination of these three types of naval hulls allows it to ensure: safety, comfort navigation, best seakeeping and maneuverability in restricted waters, stability, reduction of resistance to motion, cost management, regularity on the routes even in adverse weather-sea. These characteristics of the hull have been studied, tested and validated by leading research institutes and universities with more ameliorative results in each subsequent experimentation, reported in the present work, which demonstrated a greater hydrodynamic efficiency compared to conventional hulls of 20%.展开更多
针对当前地震动空间效应下曲线梁桥地震反应分析多采用确定性激励输入且忽略桥梁非线性的情况,采用了多维多点非平稳随机激励对曲线连续梁桥进行弹塑性响应分析。建立非线性有限元模型并降维解耦非平稳地震动非平稳演化功率谱(energy po...针对当前地震动空间效应下曲线梁桥地震反应分析多采用确定性激励输入且忽略桥梁非线性的情况,采用了多维多点非平稳随机激励对曲线连续梁桥进行弹塑性响应分析。建立非线性有限元模型并降维解耦非平稳地震动非平稳演化功率谱(energy power spectral density,EPSD)矩阵,采用绝对位移法对桥梁进行非线性时程分析。考虑不同视波速、场地条件、相干性以及平稳与非平稳地震激励,综合分析了曲线连续梁桥的随机响应及其频域特性和时域特性。结果表明,地震动空间效应和地震动的非平稳性对曲线梁桥随机响应影响很大,其中地震动空间效应对桥梁随机响应大小及其频域分布有显著影响,而非平稳性会对随机响应大小及其时变响应趋势产生重要影响。因此,在曲线连续梁桥抗震分析中需充分考虑地震动空间效应和地震动非平稳性,以避免错误估计桥梁抗震性能。提供了全面的分析结果,对加强曲线连续梁桥的抗震设计和评估,从而提高其抗震性能和可靠性具有重要意义。展开更多
基金financially supported by the National Key R&D Program of China (2021YFA1003501)the National Natural Science Foundation of China (No.U1906233,11732004)the Fundamental Research Funds for the Central Universities (DUT20ZD213,DUT20LAB308)。
文摘The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.
基金supported by the Scientific and Technological Research and Development Programs of China Railway Group Limited(Grant No.2022 Major Special Project-07)Gansu Provincial Technology Innovation Guidance Program-Special Funding for Capacity Building of Enterprise R&D Institutions(Grant No.23CXJA0011)Key R&D and transformation plan of Qinghai Province,China(Special Project for Transformation of Scientific and Technological Achievements No.2022-SF-158).
文摘In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curves exhibiting indications of sliding can be categorized into three types:B-type,D-type,and r-type.The position of the slip surface is typically determined by identifying the depth corresponding to the point of maximum displacement mutation.However,this method is sensitive to the interval of measurement points and the observation scale of the coordinate axes and suffers from unclear sliding surfaces and uncertain values.Based on the variation characteristics of these diagonal curves,we classified the landslide into three components:the sliding body,the sliding interval,and the immobile body.Moreover,three different generalization models were established to analyze the relationships between the curve form and the slip surface location based on different physical indicators such as displacement rate,relative displacement,and acceleration.The results show that the displacement rate curves of an r-type slope exhibit a clustering feature in the sliding interval,and by solving for the depth of discrete points within the step phase,it is possible to determine the location of the slip surface.On the other hand,D-type slopes have inflection points in the relative displacement curve located at the slip surface.The acceleration curves of B-type slopes exhibit clustering characteristics during the sliding interval,while the scattered acceleration data demonstrate wandering characteristics.Consequently,the slip surface location can be revealed by solving the depth corresponding to the maximum acceleration with cubic spline interpolation.The approach proposed in this paper was applied to the monitoring data of a landslide in Yunnan Province,China.The results indicate that our approach can accurately identify the slip surface location and enable computability of its position,thereby enhancing applicability and reliability of the deep-hole displacement monitoring data.
基金Project(2016YFC0802203)supported by the National Key R&D Program of ChinaProject(2013G001-A-2)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(SKLGDUEK2011)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology。
文摘Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.
基金supported by the National Natural Science Foundation of China (10472045, 10772078 and 11072108)the Science Foundation of NUAA(S0851-013)
文摘The FCSE controlling equation of pinned thinwalled curve box was derived and the indeterminate problem of continuous thin-walled curve box with diaphragm was solved based on flexibility theory. With Bayesian statistical theory,dynamic Bayesian error function of displacement parameters of indeterminate curve box was founded. The corresponding formulas of dynamic Bayesian expectation and variance were deduced. Combined with one-dimensional Fibonacci automatic search scheme of optimal step size,the Powell optimization theory was utilized to research the stochastic identification of displacement parameters of indeterminate thin-walled curve box. Then the identification steps were presented in detail and the corresponding calculation procedure was compiled. Through some classic examples,it is obtained that stochastic performances of systematic parameters and systematic responses are simultaneously deliberated in dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step size is solved by adopting Fibonacci search method. And the Powell identification of displacement parameters of indeterminate thin-walled curve box has satisfied numerical stability and convergence,which demonstrates that the presented method and the compiled procedure are correct and reliable.During parameters鈥?iterative processes,the Powell theory is irrelevant with the calculation of finite curve strip element(FCSE) partial differentiation,which proves high computation effciency of the studied method.
文摘The finite strip controlling equation of pinned curve box was deduced on basis of Novozhilov theory and with flexibility method, and the problem of continuous curve box was resolved. Dynamic Bayesian error function of displacement parameters of continuous curve box was found. The corresponding formulas of dynamic Bayesian expectation and variance were derived. After the method of solving the automatic search of step length was put forward, the optimization estimation computing formulas were also obtained by adapting conjugate gradient method. Then the steps of dynamic Bayesian estimation were given in detail. Through analysis of a Classic example, the criterion of judging the precision of the known information is gained as well as some other important conclusions about dynamic Bayesian stochastic estimation of displacement parameters of continuous curve box.
基金Supported by National Defense Pre-Research Foundation of China(104010205)
文摘In order to identify the uncertain parameters of a bolted joint finite element model,a simple and applicable way of parameter identification is introduced.By utilizing numerical simulation with the Abaqus software and experimental investigation with the MTS material testing system,the tangential force-displacement curves that reflect the characteristics of the bolted joint were acquired.On the basis of this,by employing the response surface methodology(RSM)and genetic algorithms(GAs),parameters in the FEM model were identified.The force-displacement curves by both virtual and experimental approaches are well correlated at the end.This phenomenon-based parameter identification method may help facilitate precise prediction of complex jointed connection structures.
文摘The present paper deals with the problem of assessing the local influence in a growth curve model with Rao's simple covariance structure. Based on the likelihood displacement,the curvature measure is employed to evaluate the effects of some minor perturbations on the statistical inference, thus leading to the large curvature direction, which is the most critical diagnostic statistic in the context of the local influence analysis. As an application, the common covariance-weighted perturbation scheme is thoroughly considered.
文摘The classification method of relative permeability curves is rarely reported, when relative permeability curves are applied;if the multiple relative permeability curves are normalized directly, but not classified, the calculated result maybe cause a large error. For example, the relationship curve between oil displacement efficiency and water cut, which derived from the relative permeability curve in LD oilfield is uncertain in the shape of low water cut stage. If being directly normalized, the result of the interpretation of the water flooded zone is very high. In this study, two problems were solved: 1) The mathematical equation of the relationship between oil displacement efficiency and water cut was deduced, and repaired the lost data of oil displacement efficiency and water cut curve, which solve the problem of uncertain curve shape. After analysis, the reason why the curve is not available is that relative permeability curves are not classified and optimized;2) Two kinds of classification and evaluation methods of relative permeability curve were put forward, the direct evaluation method and the analogy method;it can get the typical relative permeability curve by identifying abnormal curve.
文摘Formulae for determining Green strain of an initially curved and twisted rod with circular cross-sections are derived by using the natural (curvilinear) coordinate system. Finite element analyses are performed for the flexural buckling of initially curved and twisted thin rods under simultaneous action of axial force and torque. Numerical examples demonstrate that the given formulae are correcte. Some numerical results are compared with existing analytical solutions and data obtained by commercial FE software. The convergence of the proposed curved element is better than that of elements in the commercial FE software. It is shown that good accuracy and convergency are achieved by solving three-dimensional problems.
文摘The need to have naval units ever faster pushed the ship design to design hull shapes with increasingly higher performance thanks to the use of lightweight materials such as aluminum, and more powerful engines, etc., but without substantially modifying the traditional forms of hull. The hull patented Monotricat high hydrodynamic efficiency and energy saving it represents an evolution of the traditional architectures of the hulls, as its shape is adapted to recover wave formation engendered from the bow and sprays associated with it so as to reduce the resistance to the benefit of the speed, and navigating in displacement at speeds of planing hulls with an efficiency of about 20%. The patented hull Monotricat represents the overcoming of distinction between displacement and planing hulls, because, unlike previous solutions, the hull conventionally called Monotricat is the first displacement hull that can navigate at both displacement and planning speeds, with a resistance curve almost straight, maintaining the characteristics of a displacement hull, since it combines the characteristics of displacement and planning hull. It presents an innovative architecture that could be defined as a hybrid between a monohull and catamaran, navigating on spray self-produced. The combination of these three types of naval hulls allows it to ensure: safety, comfort navigation, best seakeeping and maneuverability in restricted waters, stability, reduction of resistance to motion, cost management, regularity on the routes even in adverse weather-sea. These characteristics of the hull have been studied, tested and validated by leading research institutes and universities with more ameliorative results in each subsequent experimentation, reported in the present work, which demonstrated a greater hydrodynamic efficiency compared to conventional hulls of 20%.
文摘针对当前地震动空间效应下曲线梁桥地震反应分析多采用确定性激励输入且忽略桥梁非线性的情况,采用了多维多点非平稳随机激励对曲线连续梁桥进行弹塑性响应分析。建立非线性有限元模型并降维解耦非平稳地震动非平稳演化功率谱(energy power spectral density,EPSD)矩阵,采用绝对位移法对桥梁进行非线性时程分析。考虑不同视波速、场地条件、相干性以及平稳与非平稳地震激励,综合分析了曲线连续梁桥的随机响应及其频域特性和时域特性。结果表明,地震动空间效应和地震动的非平稳性对曲线梁桥随机响应影响很大,其中地震动空间效应对桥梁随机响应大小及其频域分布有显著影响,而非平稳性会对随机响应大小及其时变响应趋势产生重要影响。因此,在曲线连续梁桥抗震分析中需充分考虑地震动空间效应和地震动非平稳性,以避免错误估计桥梁抗震性能。提供了全面的分析结果,对加强曲线连续梁桥的抗震设计和评估,从而提高其抗震性能和可靠性具有重要意义。