For rapid and simultaneous detection of (fluoro)quinolones, a broadly specific monoclonal antibody (mAb) that recognizes 32 (fluoro)quinolone antibiotics was prepared using a mixture of a norfloxacin derivative ...For rapid and simultaneous detection of (fluoro)quinolones, a broadly specific monoclonal antibody (mAb) that recognizes 32 (fluoro)quinolone antibiotics was prepared using a mixture of a norfloxacin derivative and a sarfloxacin derivative as the hapten. An immunochromatographic strip based on gold nanoparticles (AuNPs) was then assembled with goat anti-mouse antibody and antigen (sarfloxacin coupled to ovalbumin), used to form the C line and T line, respectively. This antigen competes with the (fluoro)quinolones in a sample incubated with mAbs labeled with AuNPs. The strip can detect 32 (fluoro)quinolones including oxolinic acid, nalidixic acid, miloxacin, pipemidic acid, piromidic acid, rosoxacin, cinoxacin, norfloxacin, pefloxacin, lomfloxacin, enofloxacin, fleroxacin, ciprofloxacin, enrofloxacin, dafloxacin, orbifloxacin, sparfloxacin, gemifloxacin, besifloxacin, balofloxacin, gatifloxacin, moxifloxacin, nadifloxacin, ofloxacin, marbofloxacin, flumequine, pazufloxacin, prulifloxacin, sarafloxacin, difloxacin, trovafloxacin, and tosufloxacin in milk within 10 min with the naked eye. The cut-off values of the strip range from 1 to 100 ng/mL and the limits of detection are 0.1- 10 ng/mL. The strip does not cross-react with antibiotics including tetracycline, sulfamethazine, ampicillin, erythromycin, aflatoxin B1, or gentamicin. In short, this immunochromatographic strip is a very useful tool for the primary screening of (fluoro)quinolones in milk.展开更多
It is known that the localized surface plasmon resonance(LSPR) wavelength of plasmonics is highly dependent on compositions and geometry of plasmonics as well as the surrounding environments. Here, monodispersed Au@Ag...It is known that the localized surface plasmon resonance(LSPR) wavelength of plasmonics is highly dependent on compositions and geometry of plasmonics as well as the surrounding environments. Here, monodispersed Au@Ag core-shell nanoparticles(Au@Ag NPs) were prepared by carefully optimizing the shell thickness of Au@Ag NPs, and the presence of hydrogen sulfide(H_2 S) would significantly alter the LSPR wavelength. On the basis of this, a photothermal paper sensor for on-site recognition of H_2 S was constructed with a visual detection limit of 12.8 ng/L.展开更多
Wireless Sensor Network (WSN) is characterized by the dense deployment of sensor nodes that continuously observe physical phenomenon. The main advantages of WSN include its low cost, rapid deployment, self-organizat...Wireless Sensor Network (WSN) is characterized by the dense deployment of sensor nodes that continuously observe physical phenomenon. The main advantages of WSN include its low cost, rapid deployment, self-organization, and fault tolerance. WSN has received tremendous interests of various research communities,展开更多
A multi-coating technique of reduced graphene oxide(RGO)was proposed to increase the sensitivity of paper-based pressure sensors.The maximum sensitivity of 17.6 kPa^-1 under the 1.4 kPa was achieved.The electrical sen...A multi-coating technique of reduced graphene oxide(RGO)was proposed to increase the sensitivity of paper-based pressure sensors.The maximum sensitivity of 17.6 kPa^-1 under the 1.4 kPa was achieved.The electrical sensing mechanism is attributed to the percolation effect.Such paper pressure sensors were applied to monitor the motor vibration,which indicates the potential of mechanical flaw detection by analyzing the waveform difference.展开更多
基金Acknowledgements This work is financially supported by the National Natural Science Foundation of China (Nos. 21522102,21503095, 21471068, 21371081, and 21301073), the Key Programs from MOST (Nos. 2016YFD0401101 and 2012YQ09019410), and grants from Natural Science Foundation of Jiangsu Province, MOF and MOE (Nos. BK20150145, BX20151038, BK20140003, BE2014672, BE2013613, BE2013611).
文摘For rapid and simultaneous detection of (fluoro)quinolones, a broadly specific monoclonal antibody (mAb) that recognizes 32 (fluoro)quinolone antibiotics was prepared using a mixture of a norfloxacin derivative and a sarfloxacin derivative as the hapten. An immunochromatographic strip based on gold nanoparticles (AuNPs) was then assembled with goat anti-mouse antibody and antigen (sarfloxacin coupled to ovalbumin), used to form the C line and T line, respectively. This antigen competes with the (fluoro)quinolones in a sample incubated with mAbs labeled with AuNPs. The strip can detect 32 (fluoro)quinolones including oxolinic acid, nalidixic acid, miloxacin, pipemidic acid, piromidic acid, rosoxacin, cinoxacin, norfloxacin, pefloxacin, lomfloxacin, enofloxacin, fleroxacin, ciprofloxacin, enrofloxacin, dafloxacin, orbifloxacin, sparfloxacin, gemifloxacin, besifloxacin, balofloxacin, gatifloxacin, moxifloxacin, nadifloxacin, ofloxacin, marbofloxacin, flumequine, pazufloxacin, prulifloxacin, sarafloxacin, difloxacin, trovafloxacin, and tosufloxacin in milk within 10 min with the naked eye. The cut-off values of the strip range from 1 to 100 ng/mL and the limits of detection are 0.1- 10 ng/mL. The strip does not cross-react with antibiotics including tetracycline, sulfamethazine, ampicillin, erythromycin, aflatoxin B1, or gentamicin. In short, this immunochromatographic strip is a very useful tool for the primary screening of (fluoro)quinolones in milk.
基金supported by the National Natural Science Foundation of China(21725501,21475007,21675009,21505003)the Fundamental Research Funds for the Central Universities(buctrc201706,buctrc201720)
文摘It is known that the localized surface plasmon resonance(LSPR) wavelength of plasmonics is highly dependent on compositions and geometry of plasmonics as well as the surrounding environments. Here, monodispersed Au@Ag core-shell nanoparticles(Au@Ag NPs) were prepared by carefully optimizing the shell thickness of Au@Ag NPs, and the presence of hydrogen sulfide(H_2 S) would significantly alter the LSPR wavelength. On the basis of this, a photothermal paper sensor for on-site recognition of H_2 S was constructed with a visual detection limit of 12.8 ng/L.
文摘Wireless Sensor Network (WSN) is characterized by the dense deployment of sensor nodes that continuously observe physical phenomenon. The main advantages of WSN include its low cost, rapid deployment, self-organization, and fault tolerance. WSN has received tremendous interests of various research communities,
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0400603)the National Natural Science Foundation of China(Grant No.61804012).
文摘A multi-coating technique of reduced graphene oxide(RGO)was proposed to increase the sensitivity of paper-based pressure sensors.The maximum sensitivity of 17.6 kPa^-1 under the 1.4 kPa was achieved.The electrical sensing mechanism is attributed to the percolation effect.Such paper pressure sensors were applied to monitor the motor vibration,which indicates the potential of mechanical flaw detection by analyzing the waveform difference.