Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes ametho...Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes amethod developed to fabricate modular three-dimensional(3D)paper-based microfluidic chips based on projection-based 3D printing(PBP)technology.A series of two-dimensional(2D)paper-based microfluidic modules was designed and fabricated.After evaluating the effect of exposure time on the accuracy of the flow channel,the resolution of this channel was experimentally analyzed.Furthermore,several 3D paper-based microfluidic chips were assembled based on the 2D ones using different methods,with good channel connectivity.Scaffold-based 2D and hydrogel-based 3D cell culture systems based on 3D paper-based microfluidic chips were verified to be feasible.Furthermore,by combining extrusion 3D bioprinting technology and the proposed 3D paper-based microfluidic chips,multiorgan microfluidic chips were established by directly printing 3D hydrogel structures on 3D paperbased microfluidic chips,confirming that the prepared modular 3D paper-based microfluidic chip is potentially applicable in various biomedical applications.展开更多
Because of potential high energy densities,microfluidic fuel cells can serve as micro-scale power sources.Because microfluidic fuel cells typically operate in the co-laminar flow regime to enable a membrane-less desig...Because of potential high energy densities,microfluidic fuel cells can serve as micro-scale power sources.Because microfluidic fuel cells typically operate in the co-laminar flow regime to enable a membrane-less design,they generally suffer from severe mass transfer limitations with respect to diffusion transport.To address this issue,a novel channel design that integrates slanted groove micro-mixers on the side walls of the channel is proposed.Numerical modeling on the design of groove micro-mixers and grooveless design demonstrates a mass transfer enhancement that has a 115%higher limiting current density and well-controlled convective mixing between the oxidant and the fuel streams with the use of slanted groove micro-mixers.Moreover,the growth of the thickness of the depletion boundary layer is found to be terminated within approximately 2 mm from the channel entrance,which is distinct from the constantly growing pattern in the grooveless design.In addition,a simplified mass transfer model capable of modeling the mass transfer prFocess with the presence of the transverse secondary flow is developed.Further,a dimensionless correlation is derived to analyze the effects of the design parameters on the limiting current density.The present theoretical study paves the way towards an optimal design of a microfluidic fuel cell integrating groove micro-mixers.展开更多
Miniature microbial fuel cells have recently drawn lots of attention as portable power generation devices due to their short startup time and environmentally-friendly process which could be used for powering small int...Miniature microbial fuel cells have recently drawn lots of attention as portable power generation devices due to their short startup time and environmentally-friendly process which could be used for powering small integrated biosensors. We designed and fabricated a microbial fuel cell in a microfluidic platform. The device was made in polydimethylsiloxane with a volume of 4 μL and consisted of two carbon cloth electrodes and proton exchange membrane. Shewanella Oneidensis MR-1 was chosen to be the electrogenic bacterial strain and inoculated into the anode chamber. Ferricyanide was used as the catholyte and pumped into the cathode chamber at a constant flow rate during the experiment. The mi- niature microbial fuel cell generated a maximum current of 2.59 μA and had a significantly short startup time.展开更多
Membraneless microfluidic fuel cells(MMFCs) outperform traditional membrane-based micro-fuel cells in membraneless architecture and high surface-to-volume ratio and facile integration, but still need substantial impro...Membraneless microfluidic fuel cells(MMFCs) outperform traditional membrane-based micro-fuel cells in membraneless architecture and high surface-to-volume ratio and facile integration, but still need substantial improvement in performance. The fundamental challenges are dictated by multiphysics regarding cell configurations: the interaction of fluid flow, mass transport and electrochemical reactions. We present a numerical research that investigates the effect of geometrical configurations(rod arrangement, cell length, rod diameter and spacer configuration) on the fuel transport and performance of an alkaline MMFC with cylinder anodes. Modeling results suggest that the staggered rod arrangement outperforms the in-line case by 10.1% at 50 μL min^(–1). Cell power output and power density vary nearly linearly with the cell length. In the case with 0.7 mm anodes and 0.3 mm spacers, the increased flow resistance at anode region drives the fuel to intrude into the spacer zone, leading to fuel transport limitation at downstream. The feasibility of non-spacer configuration is demonstrated, and the power density is 93.7% higher than the baseline due to reduced cell volume and enhanced fuel transport. In addition, horizontal extension of the anode array is found to be more favorable for scale-up, the maximum power density of 181.9 mW cm^(–3) is predicted. This study provides insight into the fundamental, and offers guidance to improve the cell design for promoting performance and facilitating system integration.展开更多
本文提出一种尿素/过硫酸钠完全被动式纸基微流体燃料电池,通过方波电流法将非贵金属镍催化剂电沉积到碳纸上制备阳极,阴极无需催化剂负载,电池成本大大降低。在不同结构及燃料、氧化剂、电解液浓度下测试了电池性能,结果表明,双层纸结...本文提出一种尿素/过硫酸钠完全被动式纸基微流体燃料电池,通过方波电流法将非贵金属镍催化剂电沉积到碳纸上制备阳极,阴极无需催化剂负载,电池成本大大降低。在不同结构及燃料、氧化剂、电解液浓度下测试了电池性能,结果表明,双层纸结构能大幅提高反应物流速,强化反应物传质,提高性能;电池在电极间距为6 mm、燃料浓度为0.3 mol·L^(-1)、氧化剂和电解液浓度均为1.0 mol·L^(-1)时,峰值功率密度和极限电流密度分别为5.9 m W·cm^(-2)和23.5 m A·cm^(-2),且运行稳定性较好。展开更多
基金sponsored by the National Natural Science Foundation of China(No.52235007,YH)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.T2121004,YH)+3 种基金the NationalNatural Science Foundation of China(No.52305300,MJX)the Fellowship of China Postdoctoral Science Foundation(No.2022M722826,MJX)the National Natural Science Foundation of China(No.82203602,JW)the Zhejiang Provincial Natural Science Foundation of China(No.LQ22H160020,JW)。
文摘Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes amethod developed to fabricate modular three-dimensional(3D)paper-based microfluidic chips based on projection-based 3D printing(PBP)technology.A series of two-dimensional(2D)paper-based microfluidic modules was designed and fabricated.After evaluating the effect of exposure time on the accuracy of the flow channel,the resolution of this channel was experimentally analyzed.Furthermore,several 3D paper-based microfluidic chips were assembled based on the 2D ones using different methods,with good channel connectivity.Scaffold-based 2D and hydrogel-based 3D cell culture systems based on 3D paper-based microfluidic chips were verified to be feasible.Furthermore,by combining extrusion 3D bioprinting technology and the proposed 3D paper-based microfluidic chips,multiorgan microfluidic chips were established by directly printing 3D hydrogel structures on 3D paperbased microfluidic chips,confirming that the prepared modular 3D paper-based microfluidic chip is potentially applicable in various biomedical applications.
基金supported by the National Natural Science Foundation of China(No.51606164).
文摘Because of potential high energy densities,microfluidic fuel cells can serve as micro-scale power sources.Because microfluidic fuel cells typically operate in the co-laminar flow regime to enable a membrane-less design,they generally suffer from severe mass transfer limitations with respect to diffusion transport.To address this issue,a novel channel design that integrates slanted groove micro-mixers on the side walls of the channel is proposed.Numerical modeling on the design of groove micro-mixers and grooveless design demonstrates a mass transfer enhancement that has a 115%higher limiting current density and well-controlled convective mixing between the oxidant and the fuel streams with the use of slanted groove micro-mixers.Moreover,the growth of the thickness of the depletion boundary layer is found to be terminated within approximately 2 mm from the channel entrance,which is distinct from the constantly growing pattern in the grooveless design.In addition,a simplified mass transfer model capable of modeling the mass transfer prFocess with the presence of the transverse secondary flow is developed.Further,a dimensionless correlation is derived to analyze the effects of the design parameters on the limiting current density.The present theoretical study paves the way towards an optimal design of a microfluidic fuel cell integrating groove micro-mixers.
文摘Miniature microbial fuel cells have recently drawn lots of attention as portable power generation devices due to their short startup time and environmentally-friendly process which could be used for powering small integrated biosensors. We designed and fabricated a microbial fuel cell in a microfluidic platform. The device was made in polydimethylsiloxane with a volume of 4 μL and consisted of two carbon cloth electrodes and proton exchange membrane. Shewanella Oneidensis MR-1 was chosen to be the electrogenic bacterial strain and inoculated into the anode chamber. Ferricyanide was used as the catholyte and pumped into the cathode chamber at a constant flow rate during the experiment. The mi- niature microbial fuel cell generated a maximum current of 2.59 μA and had a significantly short startup time.
基金supported by the International Cooperation and Exchange of the National Natural Science Foundation of China(Grant No.51620105011)the National Natural Science Foundation of China(Grant No.51776026)+3 种基金the Innovation Support Foundation for Returned Overseas Scholars,Chongqing,China(Grant No.cx2017058)the Fundamental Research Funds for the Central Universities(Grant No.2018CDXYDL0001)the support from the Visiting Scholar Foundation of Key Lab of Low-grade Energy Utilization Technologies and Systems in Chongqing University(Grant No.LLEUTS-201504)the support in part from the Canada Research Chairs Program
文摘Membraneless microfluidic fuel cells(MMFCs) outperform traditional membrane-based micro-fuel cells in membraneless architecture and high surface-to-volume ratio and facile integration, but still need substantial improvement in performance. The fundamental challenges are dictated by multiphysics regarding cell configurations: the interaction of fluid flow, mass transport and electrochemical reactions. We present a numerical research that investigates the effect of geometrical configurations(rod arrangement, cell length, rod diameter and spacer configuration) on the fuel transport and performance of an alkaline MMFC with cylinder anodes. Modeling results suggest that the staggered rod arrangement outperforms the in-line case by 10.1% at 50 μL min^(–1). Cell power output and power density vary nearly linearly with the cell length. In the case with 0.7 mm anodes and 0.3 mm spacers, the increased flow resistance at anode region drives the fuel to intrude into the spacer zone, leading to fuel transport limitation at downstream. The feasibility of non-spacer configuration is demonstrated, and the power density is 93.7% higher than the baseline due to reduced cell volume and enhanced fuel transport. In addition, horizontal extension of the anode array is found to be more favorable for scale-up, the maximum power density of 181.9 mW cm^(–3) is predicted. This study provides insight into the fundamental, and offers guidance to improve the cell design for promoting performance and facilitating system integration.
文摘本文提出一种尿素/过硫酸钠完全被动式纸基微流体燃料电池,通过方波电流法将非贵金属镍催化剂电沉积到碳纸上制备阳极,阴极无需催化剂负载,电池成本大大降低。在不同结构及燃料、氧化剂、电解液浓度下测试了电池性能,结果表明,双层纸结构能大幅提高反应物流速,强化反应物传质,提高性能;电池在电极间距为6 mm、燃料浓度为0.3 mol·L^(-1)、氧化剂和电解液浓度均为1.0 mol·L^(-1)时,峰值功率密度和极限电流密度分别为5.9 m W·cm^(-2)和23.5 m A·cm^(-2),且运行稳定性较好。