The magnetic properties and textures of grain oriented silicon steel with different thickness rolled by cross shear rolling (CSR) of different mismatched speed ratio (MSR) and annealed in magnetic field under hyd...The magnetic properties and textures of grain oriented silicon steel with different thickness rolled by cross shear rolling (CSR) of different mismatched speed ratio (MSR) and annealed in magnetic field under hydrogen were presented.Effects of the factors such as thickness and mismatched speed ratio on the magnetic properties and recrystallization texture were analyzed and the recrystallization principles in magnetic field annealing were discussed. The study would provide a new route for mass production of high quality ultra-thin grain oriented silicon steel strip.展开更多
The recrystallization texture in grain oriented silicon steel sheets, which were annealed at different primary annealingtemperatures with and without an electric field, was investigated. An automated electron backscat...The recrystallization texture in grain oriented silicon steel sheets, which were annealed at different primary annealingtemperatures with and without an electric field, was investigated. An automated electron backscattered diffraction(EBSD) technique was used to analyze the recrystallization texture. It was found that recovery and application ofelectric field in primary annealing lead to an increase of {001} component and a decrease of {111} component afterannealing at 900℃. The development of recrystallization texture can be explained in terms of the effects of electricfield and primary annealing temperature on recovery.展开更多
CW-CO2 laser nitriding technique was applied to improve the properties (such as aging property and the core loss) of grain oriented silicon steel. The samples were nitrided with regular space. Laser power density an...CW-CO2 laser nitriding technique was applied to improve the properties (such as aging property and the core loss) of grain oriented silicon steel. The samples were nitrided with regular space. Laser power density and scanning speed were chosen as 7.8×10^5W·cm^-2 and 100mm·min^-1. By some laser irradiation, Fe4N and Fe3N were formed in the nitrided zone. The nitrided samples were annealed at the temperatures ranged from 100 to 90℃. The core loss of some interested samples was tested. The results show that the core loss of the nitrided samples with different thickness of 0.23 and 0.30mm decreased by 14.9% and 9.4% respectively, and the aging property were improved up to 800℃. The mechanism of laser nitriding to improve the properties of grain oriented silicon steel is discussed.展开更多
The production of low-temperature reheated grain-oriented silicon steel is mainly based on the acquired inhibitor method.Due to the additional nitriding process,a high nitrogen content exists in the oxide layer,which ...The production of low-temperature reheated grain-oriented silicon steel is mainly based on the acquired inhibitor method.Due to the additional nitriding process,a high nitrogen content exists in the oxide layer,which changes the structure of the oxide layer.In this study,the structure of the surface oxide layer after nitriding was analyzed by scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD),glow discharge spectrometry(GDS),and X-ray diffraction(XRD).The size and orientation of ferritic grains in the oxide layer were characterized,and the distribution characteristics of the key elements along the thickness direction were determined.The results show that the oxide layer of the steel sample mainly comprised particles of Fe2SiO4 and spherical and lamellar SiO2,and Fe4N and fcc-Fe phases were also detected.Moreover,the size and orientation of ferritic grains in the oxide layer were different from those of coarse matrix ferritic grains beneath the oxide layer;however,some ferritic grains exhibited same orientations as those in the neighboring matrix.Higher nitrogen content was detected in the oxide layer than that in the matrix beneath the oxide layer.The form of nitrogen enrichment in the oxide layer was analyzed,and the growth mechanism of ferritic grains during the oxide layer formation is proposed.展开更多
The Hi-B silicon steels were cold rolled by cross shear rolling (CSR) with different mismatch speed ratio(MSR)s and conventional rolling(CR) respectively, followed by primary recrystallization annealing. The effects o...The Hi-B silicon steels were cold rolled by cross shear rolling (CSR) with different mismatch speed ratio(MSR)s and conventional rolling(CR) respectively, followed by primary recrystallization annealing. The effects of MSR and annealing temperature on magnetic properties of ultra-thin grain oriented silicon steel were analyzed. Experimental results show that, with the increase of MSR, the magnetic properties can be remarkably improved. The higher the annealing temperature is, the higher the magnetic induction and the lower the iron loss in ultra-thin silicon steel is.展开更多
Commercial grain oriented silicon steel was cold rolled to thickness from 0.06 to 0.10 mm by cross shear rolling, then annealed in vacuum or a hydrogen atmosphere furnace. Deformation textures of the sheets were resea...Commercial grain oriented silicon steel was cold rolled to thickness from 0.06 to 0.10 mm by cross shear rolling, then annealed in vacuum or a hydrogen atmosphere furnace. Deformation textures of the sheets were researched by ODF method and reverse pole figure quantitative analyses. The results indicate that: in the condition of the cross shear rolling, the deformation texture of rolled sheet is generally similar to that of conventional rolled sheet, however, the texture distribution through the thickness is asymmetrical. With mismatch speed ratio increasing, the amount of Goss texture increases. With reduction ratio increasing, the intensity of γ-fiber becomes strong.展开更多
Decarburized samples of grain oriented silicon steel were coated with alone and blended magnesias and submitted to the high temperature annealing. The magnesias and their blendings were characterized using granulometr...Decarburized samples of grain oriented silicon steel were coated with alone and blended magnesias and submitted to the high temperature annealing. The magnesias and their blendings were characterized using granulometry measurements, ignition loss and reactivity tests. After high temperature annealing, forsterite film morphology, magnetic properties and Goss deviation were also analyzed. Better magnetic properties and sharper Goss orientation were found in samples which had used blended magnesias. These results are explained by the magnesias particle size distributions, forsterite film formation and rate of inhibitors release.展开更多
The development, production and application of top high-grade non-grain-oriented (NGO) silicon steels at Baosteel were introduced in this paper. Top high grades refer to the highest grades in the intemational silico...The development, production and application of top high-grade non-grain-oriented (NGO) silicon steels at Baosteel were introduced in this paper. Top high grades refer to the highest grades in the intemational silicon steel product standard and above. B35A230 and B50A250 were developed at Baosteel in 2009 and have been used in inverter compressors for air-conditioners, small transformers and big hydropower generators in the Three Gorges project. Small- batch production of B35A210 and B50A230, which exceed the highest grades listed in the intemational silicon steel product standard,began in 2010. That was a breakthrough in the silicon steel making history in China. Presently,Baosteel' s high- grade NGO products have passed the strict qualifications of the three major electric power equipment manufacturers in China and the leading international power equipment suppliers like ALSTOM, GE, SIEMENS, VESTAS, etc. These products are characterized by low iron loss, low anisotropy, good punchability and a high lamination factor. They have been used in the 770 MW hydropower generator at Xiluodu Power Station in the three gorges area, 1 000 MW thermal power generators and 2.5 MW wind power generators.展开更多
For reducing the core loss of grain oriented silicon steel and improving its aging property, a new method, the LLSA by using Sb as the laser surface alloying element, was investigated, and at proper technique conditio...For reducing the core loss of grain oriented silicon steel and improving its aging property, a new method, the LLSA by using Sb as the laser surface alloying element, was investigated, and at proper technique conditions rather good result was obtained.展开更多
Power loss of Fe-3%Sigrain-oriented silicon steelwas measured after ballscribing with different spacing using a self-designed tool.Three different sections of power loss,including hysteresis loss,abnormalloss,and eddy...Power loss of Fe-3%Sigrain-oriented silicon steelwas measured after ballscribing with different spacing using a self-designed tool.Three different sections of power loss,including hysteresis loss,abnormalloss,and eddy current loss,were measured and calculated,respectively.The loss variation and ratio were analyzed based on the experimentaldata.At 1.0 T,hysteresis loss of tested steelwith scribing spacing of 8 mm descends by 8.2% compared to samples without scribing,which is similar to the totalloss variation,and abnormalloss descends by 16.8%.At 1.0 T,hysteresis loss ratio of the steelwith scribing spacing of 16 mm ascends from 55.7% to 57.9%,and eddy current loss increases from 17.4% to 24.1%,while abnormalloss descends from 26.9% to 23.7%.The experimentalresults show that the reduction of power loss after scribing is mainly due to decreasing of hysteresis loss and abnormalloss.展开更多
Grain-oriented 4.5 wt% Si and 6.5 wt% Si steels were produced by strip casting, warm rolling, cold rolling, primary annealing, and secondary annealing. Goss grains were sufficiently developed and covered the entire su...Grain-oriented 4.5 wt% Si and 6.5 wt% Si steels were produced by strip casting, warm rolling, cold rolling, primary annealing, and secondary annealing. Goss grains were sufficiently developed and covered the entire surface of the secondary recrystallized sheets. The microstructure and texture was characterized by OM, EBSD, TEM, and XRD. It was observed that after rolling at 700 ℃, the 6.5 wt% Si steel exhibited a considerable degree of shear bands, whereas the 4.5 wt% Si steel indicated their rare presence. After primary annealing, completely equiaxed grains showing strong y-fiber texture were presented in both alloys. By comparison, the 6.5 wt% Si steel showed smaller grain size and few favorable Goss grains. Additionally, a higher density of fine precipitates were exhibited in the 6.5 wt% Si steel, leading to a ~ 30-s delay in primary recrystallization. During secondary annealing, abnormal grain growth of the 6.5 wt% Si steel occurred at higher temperature compared to the 4.5 wt% Si steel, and the final grain size of the 6.5 wt% Si steel was greater. The magnetic induction B8 of the 4.5 wt% Si and the 6.5 wt% Si steels was 1.75 and 1.76 T, respectively, and the high- frequency core losses were significantly improved in comparison with the non-oriented high silicon steel.展开更多
High energy synchrotron diffraction offers great potential to study the recrystallization kinetics of metallic materials. To study the formation of Goss texture ({ [10}(001)) of grain oriented (GO) silicon steel...High energy synchrotron diffraction offers great potential to study the recrystallization kinetics of metallic materials. To study the formation of Goss texture ({ [10}(001)) of grain oriented (GO) silicon steel during secondary recrystallization process, an in situ experiment using hi gh energy X-ray diffraction was designed. The results showed that the secondary recrystallization began when the heating temperature was 1,494 K, and the grains grew rapidly above this temperature. With an increase in annealing temperature, the large grains with 7 orientation [〈111〉//normal direction] formed and gradually occupied the dominant position. As the annealing temperature increased even further, the grains with Goss orientation to a very large size by devouring the 7 orientation grains that formed in the early annealing stage. A single crystal with a Goss orientation was observed in the GO silicon steel when the annealing temperature was 1,540 K.展开更多
The product quality of graiworiented silicon steel may be affected by each process because of its complicat- ed production technology. Morphologies, compositions and structures of forsterite film formed in different c...The product quality of graiworiented silicon steel may be affected by each process because of its complicat- ed production technology. Morphologies, compositions and structures of forsterite film formed in different conditions on the samples subjected to high temperature annealing were measured by using a scanning electron microscope, an energy disperse spectroscope, an X ray diffractometer and Fourier transform infrared technique respectively. The morphologies and influential factors of forsterite film were investigated. The results showed that the major compo- nent of forsterite film composed of light-gray spherical particles was Mg2 SiO4, and the minor was MgAl2O4. If the amount of MgO coated on the surface of the steel was less, bare holes or even large-scale bare grains for forsterite film appeared. The higher temperature of water bath during decarburization annealing led to gaps of strips in forster ite film. Moreover, MgO coating method had great influence on forsterite film. Roller coating method was beneficial to increase compactness and smoothness of forsterite film, but was disadvantageous to its thickness.展开更多
Low-temperature slab-reheated grain-oriented silicon steel is characterized by a sharp {411}〈148〉 primary recrystallization texture. To date, the influence of this texture on secondary recrystallization is not clear...Low-temperature slab-reheated grain-oriented silicon steel is characterized by a sharp {411}〈148〉 primary recrystallization texture. To date, the influence of this texture on secondary recrystallization is not clear. Microtextures in primary and secondary reerystallized sheets of low-temperature reheated grain-oriented silicon steel were examined using electron backscatter diffraction. By comparing the textures and microstructures of specific primary reerystallized grains neighboring secondary grains with those of other primary grains, the influences of primary re- crystallization textures and microstructures on the orientations of secondary grains were investigated. Results show that for low-temperature reheated graiworiented silicon steel, the primary recrystallization sheet comprises { 411 } 〈148〉, {111}〈112〉, and {001}〈120〉 texture componems. During secondary recrystallization, the {111}〈112〉 primary recrystallized grains were easily consumed by abnormally grown Goss, deviated Goss, Brass, or {210}〈001〉grains ;the { 411 }〈148〉 primary recrystallized grains were more resistant to being swallowed; and the {001} 〈120 grains were the most resistant to being consumed. For a particular primary grain, the distribution of its surrounding grain boundaries determined how easily it is consumed during secondary recrystallization. Primary grains surrounded by 20°- 45° grain boundaries were consumed much earlier than those having grain boundaries above 45°, which is in accordance with high-energy grain boundary theory. In addition, special ∑9 boundaries between {411}〈148〉 and Goss grains move more slowly than ∑9 boundaries between {111 }〈112〉 and Goss grains, which is attributed to the different positions of 〈110〉 rotation axis with respect to the normals of grain boundaries.展开更多
The grain-oriented silicon steel is a kind of important magnetic materials with low iron loss and high induc tion. Hot hand normalizing annealing is an important process which influences the microstructure and the dev...The grain-oriented silicon steel is a kind of important magnetic materials with low iron loss and high induc tion. Hot hand normalizing annealing is an important process which influences the microstructure and the development of the inhibitors. The effects of different annealing temperatures and cooling conditions on the inhibitors and microstructures of normalizing annealing band were investigated. The microstructure and different kinds of the inhibitors, i. e. , A1N, AIN+Cu, S+MnS, and TiN, were discovered. The result shows that a suitable cooling condition leads to more nano scale inhibitors and uniform microstructure of the normalizing annealing band and consequently results in better magnetic properties.展开更多
In this study, two types of as-cast microstructure produced by strip casting were cold rolled and annealed to investigate the effect of initial microstructure on the textural evolution and magnetic properties of non-o...In this study, two types of as-cast microstructure produced by strip casting were cold rolled and annealed to investigate the effect of initial microstructure on the textural evolution and magnetic properties of non-oriented silicon steel. The results indicated that the cold-rolled sheets of coarse-grained strip with pronounced {100} components exhibited stronger 入 fiber(<100>//ND) and weaker γ fiber(<111>//ND)texture as composed to the fine-grained strip with strong Goss({110}(001)) texture. After annealing, the former was dominated by η fiber(<001>//RD) texture with a peak at {110}<001)orientation, while the latter consisted of strong {111}(112) and relatively weak {110}(001) texture. In addition, a number of precipitates of size ~30-150 nm restricted the grain growth during annealing, resulting in recrystallization of grain size of ~46 μm in the coarse-grained specimen and ~41μm in the fine-grained specimen.Ultimately, higher magnetic induction(~1.72 T) and lower core loss(~4.04 W/kg) were obtained in the final annealed sheets of coarse-grained strip with strong {100} texture.展开更多
A grain-oriented silicon steel strip with AlN as main inhibitor was produced by thin slab casting and rolling(TSCR)process.The microstructure,texture and precipitates of the hot-rolled strip were investigated by use...A grain-oriented silicon steel strip with AlN as main inhibitor was produced by thin slab casting and rolling(TSCR)process.The microstructure,texture and precipitates of the hot-rolled strip were investigated by use of optical microscope(OM),X-ray diffractometer,transmission electron microscope(TEM)and energy dispersive spectroscope(EDS).The result shows that the microstructure and texture exhibit a through-thickness gradient similar to that of the hot-rolled strip produced by conventional high-temperature slab-reheating process;the preferred orientation varies from {110}〈001〉in the surface layer to{001}〈110〉in the center layer,and the Goss texture with a maximum intensity mainly concentrates on the surface layer.In addition,some other texture components,for example rotated Goss texture,form in the 1/4thickness layer,which are not observed in the hotrolled strip produced by conventional high-temperature slab-reheating process.The precipitates in the hot-rolled strip are mainly(Mn,Cu)S and AlN compound particles with dimension of 100-200 nm,and the fine precipitates are significantly less than that in the hot-rolled strip produced by conventional high-temperature slab-reheating process.Moreover,the areal density of the fine precipitates in the center layer is more than that in the surface layer.展开更多
Magnetic shielding of grain-oriented silicon steel was investigated. Ball scribing with spacing of 2 to 16 mm was performed at peak flux densities of 8.0 mT to 1.3 T. Magnetic shielding efficiency was calculated, incl...Magnetic shielding of grain-oriented silicon steel was investigated. Ball scribing with spacing of 2 to 16 mm was performed at peak flux densities of 8.0 mT to 1.3 T. Magnetic shielding efficiency was calculated, including absorption, reflection and inner multi-reflection shielding efficiencies. Magnetic shielding efficiency (MSE) increase ratios after different scribing spacing were compared, and thickness requirement to achieve absorption shielding of 50 dB was also calculated. The results show that magnetic shielding efficiencies of C711 and H668 silicon steels increase by 4.79 and 3.15 dB respectively after scribing of 16 mm. Before scribing, shielding efficiency of H668 steel was higher than that of C711 steel, while after scribing, both absorption and shielding efficiency gaps were largely abridged between C711 and H668 steels. Plate thickness of C711 steel could be reduced from 3.18 mm without scribing to 2. 20 mm after scribing of 16 mm. There is no apparent thickness reduction at lower flux densities; while the peak flux density is above 0.3 T, the shielding effect becomes apparent, and the thickness could be reduced from 2.28 mm without scribing to 1.70 mm with scribing spacing of 16 ram. Magnetizing process and its effect on variation of magnetic shielding were also analyzed.展开更多
By rolling and nitriding processes, 0.23- to 0.3-mm-thick grain-oriented 6.5 wt% silicon steel sheets were produced. The core losses of grain-oriented 6.5 wt% silicon steel at frequencies ranging from 400 Hz to 20 kHz...By rolling and nitriding processes, 0.23- to 0.3-mm-thick grain-oriented 6.5 wt% silicon steel sheets were produced. The core losses of grain-oriented 6.5 wt% silicon steel at frequencies ranging from 400 Hz to 20 kHz were lower than that of the grain-oriented 3 wt% silicon steel with the same thickness by 16.6-35.8%. The secondary recrystallization behavior was investigated by scanning electron microscopy, energy-dispersive spectroscopy, and electron backscattered diffraction. The results show that the secondary recrystallization in high-silicon steel sheets develops more completely as the nitrogen content increases after nitriding, secondary recrystallized grain sizes become larger, and the sharpness of Goss texture increases. Because more { 110} (116) grains in the subsurface and the central layer of the sheets have a lot of 20°-45° high-energy boundaries in addition to Goss grains, {110} (116) can be the main component through selective growth during secondary recrystallization when the inhibitor quantity is not enough and inhibitor intensity is weaker. The increases in nitrogen content can increase the inhibitor intensity and hinder abnormal growth of a mount of {110} (116) grains and therefore enhance the sharpness of Goss texture.展开更多
文摘The magnetic properties and textures of grain oriented silicon steel with different thickness rolled by cross shear rolling (CSR) of different mismatched speed ratio (MSR) and annealed in magnetic field under hydrogen were presented.Effects of the factors such as thickness and mismatched speed ratio on the magnetic properties and recrystallization texture were analyzed and the recrystallization principles in magnetic field annealing were discussed. The study would provide a new route for mass production of high quality ultra-thin grain oriented silicon steel strip.
基金The authors are grateful for the financial support from the National Natural Science Foundation of ChinaShanghai Baosteel Group Cor poration(No.50130010)+1 种基金the Natural Science Foundation of Liaoning Province(No.2001102026)the Teaching and R esearch Encouragement P rogram for Excellent Young Teachers in Universities of Ministry of China.
文摘The recrystallization texture in grain oriented silicon steel sheets, which were annealed at different primary annealingtemperatures with and without an electric field, was investigated. An automated electron backscattered diffraction(EBSD) technique was used to analyze the recrystallization texture. It was found that recovery and application ofelectric field in primary annealing lead to an increase of {001} component and a decrease of {111} component afterannealing at 900℃. The development of recrystallization texture can be explained in terms of the effects of electricfield and primary annealing temperature on recovery.
基金supported by the National Natural Science Foundation of China(No.50174020).
文摘CW-CO2 laser nitriding technique was applied to improve the properties (such as aging property and the core loss) of grain oriented silicon steel. The samples were nitrided with regular space. Laser power density and scanning speed were chosen as 7.8×10^5W·cm^-2 and 100mm·min^-1. By some laser irradiation, Fe4N and Fe3N were formed in the nitrided zone. The nitrided samples were annealed at the temperatures ranged from 100 to 90℃. The core loss of some interested samples was tested. The results show that the core loss of the nitrided samples with different thickness of 0.23 and 0.30mm decreased by 14.9% and 9.4% respectively, and the aging property were improved up to 800℃. The mechanism of laser nitriding to improve the properties of grain oriented silicon steel is discussed.
基金financially supported by the Fundamental Research Funds for the Central Universities (No. FRF-IC-18-006)
文摘The production of low-temperature reheated grain-oriented silicon steel is mainly based on the acquired inhibitor method.Due to the additional nitriding process,a high nitrogen content exists in the oxide layer,which changes the structure of the oxide layer.In this study,the structure of the surface oxide layer after nitriding was analyzed by scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD),glow discharge spectrometry(GDS),and X-ray diffraction(XRD).The size and orientation of ferritic grains in the oxide layer were characterized,and the distribution characteristics of the key elements along the thickness direction were determined.The results show that the oxide layer of the steel sample mainly comprised particles of Fe2SiO4 and spherical and lamellar SiO2,and Fe4N and fcc-Fe phases were also detected.Moreover,the size and orientation of ferritic grains in the oxide layer were different from those of coarse matrix ferritic grains beneath the oxide layer;however,some ferritic grains exhibited same orientations as those in the neighboring matrix.Higher nitrogen content was detected in the oxide layer than that in the matrix beneath the oxide layer.The form of nitrogen enrichment in the oxide layer was analyzed,and the growth mechanism of ferritic grains during the oxide layer formation is proposed.
文摘The Hi-B silicon steels were cold rolled by cross shear rolling (CSR) with different mismatch speed ratio(MSR)s and conventional rolling(CR) respectively, followed by primary recrystallization annealing. The effects of MSR and annealing temperature on magnetic properties of ultra-thin grain oriented silicon steel were analyzed. Experimental results show that, with the increase of MSR, the magnetic properties can be remarkably improved. The higher the annealing temperature is, the higher the magnetic induction and the lower the iron loss in ultra-thin silicon steel is.
基金National Natural Science Foundation of China!(No. 59671037).
文摘Commercial grain oriented silicon steel was cold rolled to thickness from 0.06 to 0.10 mm by cross shear rolling, then annealed in vacuum or a hydrogen atmosphere furnace. Deformation textures of the sheets were researched by ODF method and reverse pole figure quantitative analyses. The results indicate that: in the condition of the cross shear rolling, the deformation texture of rolled sheet is generally similar to that of conventional rolled sheet, however, the texture distribution through the thickness is asymmetrical. With mismatch speed ratio increasing, the amount of Goss texture increases. With reduction ratio increasing, the intensity of γ-fiber becomes strong.
文摘Decarburized samples of grain oriented silicon steel were coated with alone and blended magnesias and submitted to the high temperature annealing. The magnesias and their blendings were characterized using granulometry measurements, ignition loss and reactivity tests. After high temperature annealing, forsterite film morphology, magnetic properties and Goss deviation were also analyzed. Better magnetic properties and sharper Goss orientation were found in samples which had used blended magnesias. These results are explained by the magnesias particle size distributions, forsterite film formation and rate of inhibitors release.
文摘The development, production and application of top high-grade non-grain-oriented (NGO) silicon steels at Baosteel were introduced in this paper. Top high grades refer to the highest grades in the intemational silicon steel product standard and above. B35A230 and B50A250 were developed at Baosteel in 2009 and have been used in inverter compressors for air-conditioners, small transformers and big hydropower generators in the Three Gorges project. Small- batch production of B35A210 and B50A230, which exceed the highest grades listed in the intemational silicon steel product standard,began in 2010. That was a breakthrough in the silicon steel making history in China. Presently,Baosteel' s high- grade NGO products have passed the strict qualifications of the three major electric power equipment manufacturers in China and the leading international power equipment suppliers like ALSTOM, GE, SIEMENS, VESTAS, etc. These products are characterized by low iron loss, low anisotropy, good punchability and a high lamination factor. They have been used in the 770 MW hydropower generator at Xiluodu Power Station in the three gorges area, 1 000 MW thermal power generators and 2.5 MW wind power generators.
基金National Natural Science FOundation of China! (No. 59974010).
文摘For reducing the core loss of grain oriented silicon steel and improving its aging property, a new method, the LLSA by using Sb as the laser surface alloying element, was investigated, and at proper technique conditions rather good result was obtained.
基金Funded by the National Natural Science Foundation of China(Nos.51174057 and 51404159)the National High Technology Research and Development Program(No.2012AA03A503)Research Fund for the Doctoral Program of Higher Education of China(No.20130042110040)
文摘Power loss of Fe-3%Sigrain-oriented silicon steelwas measured after ballscribing with different spacing using a self-designed tool.Three different sections of power loss,including hysteresis loss,abnormalloss,and eddy current loss,were measured and calculated,respectively.The loss variation and ratio were analyzed based on the experimentaldata.At 1.0 T,hysteresis loss of tested steelwith scribing spacing of 8 mm descends by 8.2% compared to samples without scribing,which is similar to the totalloss variation,and abnormalloss descends by 16.8%.At 1.0 T,hysteresis loss ratio of the steelwith scribing spacing of 16 mm ascends from 55.7% to 57.9%,and eddy current loss increases from 17.4% to 24.1%,while abnormalloss descends from 26.9% to 23.7%.The experimentalresults show that the reduction of power loss after scribing is mainly due to decreasing of hysteresis loss and abnormalloss.
基金inancially supported by the National Natural Science Foundation of China(Nos.51174059,51404155,and U1260204)the Fundamental Research Funds for the Central Universities(N130407003)+1 种基金the Program for New Century Excellent Talents in University(NCET-130111)the Program for Liaoning Excellent Talents in University (LR2014007)
文摘Grain-oriented 4.5 wt% Si and 6.5 wt% Si steels were produced by strip casting, warm rolling, cold rolling, primary annealing, and secondary annealing. Goss grains were sufficiently developed and covered the entire surface of the secondary recrystallized sheets. The microstructure and texture was characterized by OM, EBSD, TEM, and XRD. It was observed that after rolling at 700 ℃, the 6.5 wt% Si steel exhibited a considerable degree of shear bands, whereas the 4.5 wt% Si steel indicated their rare presence. After primary annealing, completely equiaxed grains showing strong y-fiber texture were presented in both alloys. By comparison, the 6.5 wt% Si steel showed smaller grain size and few favorable Goss grains. Additionally, a higher density of fine precipitates were exhibited in the 6.5 wt% Si steel, leading to a ~ 30-s delay in primary recrystallization. During secondary annealing, abnormal grain growth of the 6.5 wt% Si steel occurred at higher temperature compared to the 4.5 wt% Si steel, and the final grain size of the 6.5 wt% Si steel was greater. The magnetic induction B8 of the 4.5 wt% Si and the 6.5 wt% Si steels was 1.75 and 1.76 T, respectively, and the high- frequency core losses were significantly improved in comparison with the non-oriented high silicon steel.
基金supported by the Key Projects of the National Science & Technology Pillar Program (No. 2011BAE13B03)the Fundamental Research Funds for the Central Universities (No. N110502001)
文摘High energy synchrotron diffraction offers great potential to study the recrystallization kinetics of metallic materials. To study the formation of Goss texture ({ [10}(001)) of grain oriented (GO) silicon steel during secondary recrystallization process, an in situ experiment using hi gh energy X-ray diffraction was designed. The results showed that the secondary recrystallization began when the heating temperature was 1,494 K, and the grains grew rapidly above this temperature. With an increase in annealing temperature, the large grains with 7 orientation [〈111〉//normal direction] formed and gradually occupied the dominant position. As the annealing temperature increased even further, the grains with Goss orientation to a very large size by devouring the 7 orientation grains that formed in the early annealing stage. A single crystal with a Goss orientation was observed in the GO silicon steel when the annealing temperature was 1,540 K.
文摘The product quality of graiworiented silicon steel may be affected by each process because of its complicat- ed production technology. Morphologies, compositions and structures of forsterite film formed in different conditions on the samples subjected to high temperature annealing were measured by using a scanning electron microscope, an energy disperse spectroscope, an X ray diffractometer and Fourier transform infrared technique respectively. The morphologies and influential factors of forsterite film were investigated. The results showed that the major compo- nent of forsterite film composed of light-gray spherical particles was Mg2 SiO4, and the minor was MgAl2O4. If the amount of MgO coated on the surface of the steel was less, bare holes or even large-scale bare grains for forsterite film appeared. The higher temperature of water bath during decarburization annealing led to gaps of strips in forster ite film. Moreover, MgO coating method had great influence on forsterite film. Roller coating method was beneficial to increase compactness and smoothness of forsterite film, but was disadvantageous to its thickness.
基金Item Sponsored by National High Technology Research and Development Program of China(2012AA03A505)
文摘Low-temperature slab-reheated grain-oriented silicon steel is characterized by a sharp {411}〈148〉 primary recrystallization texture. To date, the influence of this texture on secondary recrystallization is not clear. Microtextures in primary and secondary reerystallized sheets of low-temperature reheated grain-oriented silicon steel were examined using electron backscatter diffraction. By comparing the textures and microstructures of specific primary reerystallized grains neighboring secondary grains with those of other primary grains, the influences of primary re- crystallization textures and microstructures on the orientations of secondary grains were investigated. Results show that for low-temperature reheated graiworiented silicon steel, the primary recrystallization sheet comprises { 411 } 〈148〉, {111}〈112〉, and {001}〈120〉 texture componems. During secondary recrystallization, the {111}〈112〉 primary recrystallized grains were easily consumed by abnormally grown Goss, deviated Goss, Brass, or {210}〈001〉grains ;the { 411 }〈148〉 primary recrystallized grains were more resistant to being swallowed; and the {001} 〈120 grains were the most resistant to being consumed. For a particular primary grain, the distribution of its surrounding grain boundaries determined how easily it is consumed during secondary recrystallization. Primary grains surrounded by 20°- 45° grain boundaries were consumed much earlier than those having grain boundaries above 45°, which is in accordance with high-energy grain boundary theory. In addition, special ∑9 boundaries between {411}〈148〉 and Goss grains move more slowly than ∑9 boundaries between {111 }〈112〉 and Goss grains, which is attributed to the different positions of 〈110〉 rotation axis with respect to the normals of grain boundaries.
基金Item Sponsored by National Science Fund and Baosteel Joint Funding of China(50934009)
文摘The grain-oriented silicon steel is a kind of important magnetic materials with low iron loss and high induc tion. Hot hand normalizing annealing is an important process which influences the microstructure and the development of the inhibitors. The effects of different annealing temperatures and cooling conditions on the inhibitors and microstructures of normalizing annealing band were investigated. The microstructure and different kinds of the inhibitors, i. e. , A1N, AIN+Cu, S+MnS, and TiN, were discovered. The result shows that a suitable cooling condition leads to more nano scale inhibitors and uniform microstructure of the normalizing annealing band and consequently results in better magnetic properties.
基金support from the National Natural Science Foundation of China(Nos.51674080,51404155 and U1260204)the National Key R&D Program of China(No.2017YFB0304105)
文摘In this study, two types of as-cast microstructure produced by strip casting were cold rolled and annealed to investigate the effect of initial microstructure on the textural evolution and magnetic properties of non-oriented silicon steel. The results indicated that the cold-rolled sheets of coarse-grained strip with pronounced {100} components exhibited stronger 入 fiber(<100>//ND) and weaker γ fiber(<111>//ND)texture as composed to the fine-grained strip with strong Goss({110}(001)) texture. After annealing, the former was dominated by η fiber(<001>//RD) texture with a peak at {110}<001)orientation, while the latter consisted of strong {111}(112) and relatively weak {110}(001) texture. In addition, a number of precipitates of size ~30-150 nm restricted the grain growth during annealing, resulting in recrystallization of grain size of ~46 μm in the coarse-grained specimen and ~41μm in the fine-grained specimen.Ultimately, higher magnetic induction(~1.72 T) and lower core loss(~4.04 W/kg) were obtained in the final annealed sheets of coarse-grained strip with strong {100} texture.
基金funded by National Natural Science Foundation of China(51274155)Provincial Natural Science Foundation of Hubei Province of China(2014CFB819)
文摘A grain-oriented silicon steel strip with AlN as main inhibitor was produced by thin slab casting and rolling(TSCR)process.The microstructure,texture and precipitates of the hot-rolled strip were investigated by use of optical microscope(OM),X-ray diffractometer,transmission electron microscope(TEM)and energy dispersive spectroscope(EDS).The result shows that the microstructure and texture exhibit a through-thickness gradient similar to that of the hot-rolled strip produced by conventional high-temperature slab-reheating process;the preferred orientation varies from {110}〈001〉in the surface layer to{001}〈110〉in the center layer,and the Goss texture with a maximum intensity mainly concentrates on the surface layer.In addition,some other texture components,for example rotated Goss texture,form in the 1/4thickness layer,which are not observed in the hotrolled strip produced by conventional high-temperature slab-reheating process.The precipitates in the hot-rolled strip are mainly(Mn,Cu)S and AlN compound particles with dimension of 100-200 nm,and the fine precipitates are significantly less than that in the hot-rolled strip produced by conventional high-temperature slab-reheating process.Moreover,the areal density of the fine precipitates in the center layer is more than that in the surface layer.
基金Item Sponsored by National Natural Science Foundation of China(51174057,51274062)National High Technology Research and Development Program of China(2012AA03A503)
文摘Magnetic shielding of grain-oriented silicon steel was investigated. Ball scribing with spacing of 2 to 16 mm was performed at peak flux densities of 8.0 mT to 1.3 T. Magnetic shielding efficiency was calculated, including absorption, reflection and inner multi-reflection shielding efficiencies. Magnetic shielding efficiency (MSE) increase ratios after different scribing spacing were compared, and thickness requirement to achieve absorption shielding of 50 dB was also calculated. The results show that magnetic shielding efficiencies of C711 and H668 silicon steels increase by 4.79 and 3.15 dB respectively after scribing of 16 mm. Before scribing, shielding efficiency of H668 steel was higher than that of C711 steel, while after scribing, both absorption and shielding efficiency gaps were largely abridged between C711 and H668 steels. Plate thickness of C711 steel could be reduced from 3.18 mm without scribing to 2. 20 mm after scribing of 16 mm. There is no apparent thickness reduction at lower flux densities; while the peak flux density is above 0.3 T, the shielding effect becomes apparent, and the thickness could be reduced from 2.28 mm without scribing to 1.70 mm with scribing spacing of 16 ram. Magnetizing process and its effect on variation of magnetic shielding were also analyzed.
基金Financial support from the National HighTechnology Research and Development Program of China(No.2012AA03A505)
文摘By rolling and nitriding processes, 0.23- to 0.3-mm-thick grain-oriented 6.5 wt% silicon steel sheets were produced. The core losses of grain-oriented 6.5 wt% silicon steel at frequencies ranging from 400 Hz to 20 kHz were lower than that of the grain-oriented 3 wt% silicon steel with the same thickness by 16.6-35.8%. The secondary recrystallization behavior was investigated by scanning electron microscopy, energy-dispersive spectroscopy, and electron backscattered diffraction. The results show that the secondary recrystallization in high-silicon steel sheets develops more completely as the nitrogen content increases after nitriding, secondary recrystallized grain sizes become larger, and the sharpness of Goss texture increases. Because more { 110} (116) grains in the subsurface and the central layer of the sheets have a lot of 20°-45° high-energy boundaries in addition to Goss grains, {110} (116) can be the main component through selective growth during secondary recrystallization when the inhibitor quantity is not enough and inhibitor intensity is weaker. The increases in nitrogen content can increase the inhibitor intensity and hinder abnormal growth of a mount of {110} (116) grains and therefore enhance the sharpness of Goss texture.