In this study,the effect of hot calendering process on the microstructure and properties of poly(p-phenylene terephthalamide)(PPTA) paper-based materials was investigated.The microstructures of the fracture surface,cr...In this study,the effect of hot calendering process on the microstructure and properties of poly(p-phenylene terephthalamide)(PPTA) paper-based materials was investigated.The microstructures of the fracture surface,crystalline structure,and single fiber strength of the PPTA paperbased materials as well as the different bonding behaviors between the PPTA fibers and PPTA fibrids obtained before and after the hot calendering process were examined.The results indicated that a high linear pressure would result in a limited improvement of the strength owing to the unimproved paper structure.The optimal values of tensile index and dielectric strength of 56.6 N·m/g and 27.6 kV/mm,respectively,could only be achieved with a synergistic effects of hot calendering temperature and linear pressure(240℃ and 110 k N/m,respectively).This result suggested it was possible to achieve a significant reinforcement and improvement in the interfacial bonding of functional PPTA paper-based materials,and avoid the formation of unexpected pleats and cracks in PPTA paper-based materials during the hot calendering process.展开更多
Paper-based friction materials are porous materials that exhibit anisotropy;they exhibit random pore sizes and quantities during their preparation,thereby rendering the control of their pore structure difficult.Compos...Paper-based friction materials are porous materials that exhibit anisotropy;they exhibit random pore sizes and quantities during their preparation,thereby rendering the control of their pore structure difficult.Composites with different pore structures are obtained by introducing chemical foaming technology during their preparation to regulate their pore structure and investigate the effect of pore structure on the properties of paper-based friction materials.The results indicate that the skeleton density,total pore area,average pore diameter,and porosity of the materials increase after chemical foaming treatment,showing a more open pore structure.The addition of an organic chemical foaming agent improves the curing degree of the matrix significantly.Consequently,the thermal stability of the materials improves significantly,and the hardness and elastic modulus of the matrix increase by 73.7%and 49.4%,respectively.The dynamic friction coefficient increases and the wear rate is reduced considerably after optimizing the pore structure.The wear rate,in particular,decreases by 47.7%from 2.83×10^(−8) to 1.48×10^(−8)cm^(3)/J as the foaming agent content increases.Most importantly,this study provides an effective method to regulate the pore structure of wet friction materials,which is conducive to achieving the desired tribological properties.展开更多
We present a method to fabricate handcrafted thermoelectric devices on standard office paper substrates.The devices are based on thin films of WS_(2),Te,and BP(P-type semiconductors)and TiS_(3)and TiS_(2)(N-type semic...We present a method to fabricate handcrafted thermoelectric devices on standard office paper substrates.The devices are based on thin films of WS_(2),Te,and BP(P-type semiconductors)and TiS_(3)and TiS_(2)(N-type semiconductors),deposited by simply rubbing powder of these materials against paper.The thermoelectric properties of these semiconducting films revealed maximum Seebeck coefficients of(+1.32±0.27)mV K^(-1)and(-0.82±0.15)mV K^(-1)for WS_(2)and TiS_(3),respectively.Additionally,Peltier elements were fabricated by interconnecting the P-and N-type films with graphite electrodes.A thermopower value up to 6.11 mV K^(-1)was obtained when the Peltier element were constructed with three junctions.The findings of this work show proof-of-concept devices to illustrate the potential application of semiconducting van der Waals materials in future thermoelectric power generation as well as temperature sensing for low-cost disposable electronic devices.展开更多
Human–machine interactions using deep-learning methods are important in the research of virtual reality,augmented reality,and metaverse.Such research remains challenging as current interactive sensing interfaces for ...Human–machine interactions using deep-learning methods are important in the research of virtual reality,augmented reality,and metaverse.Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes,signal crosstalk,propagation delay,and demanding configuration requirements.Here,an all-inone multipoint touch sensor(AIOM touch sensor)with only two electrodes is reported.The AIOM touch sensor is efficiently constructed by gradient resistance elements,which can highly adapt to diverse application-dependent configurations.Combined with deep learning method,the AIOM touch sensor can be utilized to recognize,learn,and memorize human–machine interactions.A biometric verification system is built based on the AIOM touch sensor,which achieves a high identification accuracy of over 98%and offers a promising hybrid cyber security against password leaking.Diversiform human–machine interactions,including freely playing piano music and programmatically controlling a drone,demonstrate the high stability,rapid response time,and excellent spatiotemporally dynamic resolution of the AIOM touch sensor,which will promote significant development of interactive sensing interfaces between fingertips and virtual objects.展开更多
Nitrogen dioxide(NO_(2))is a representative toxicant in air pollution that mostly arises from the exhaust gas released by automobiles.It is related to various respiratory diseases such as pneumonia and sudden infant d...Nitrogen dioxide(NO_(2))is a representative toxicant in air pollution that mostly arises from the exhaust gas released by automobiles.It is related to various respiratory diseases such as pneumonia and sudden infant death syndrome.Additionally,because the toxicity of nitrogen dioxide is high in overpopulated areas(i.e.,a capital or metropolis),the development of simple,practical,and facile sensors is highly needed.This work presents a flexible and disposable paper-based NO_(2)sensor based on a reduced graphene oxide/chitosan(r GO/CS)composite.The synthesized r GO/CS composite can be easily flexed and deformed into various shapes,which are attributed to chitosan molecules that function as a dispersion and reduction agent and support material.In addition,this composite can be attached to paper owing to its adhesive property;hence it can be utilized in versatile applications in a disposable manner.By analyzing the conductive change of the r GO/CS composite when it reacts with NO_(2),we can detect nitrogen dioxide in a concentration range of 0–100 ppm with a detection limit of 1 ppm.Moreover,we performed NO_(2)detection in the exhaust gas released by automobiles using the r GO/CS composite for practical application.The results indicated that the r GO/CS composite has the potential to be used in feasible gas sensing as a facile and disposable sensor under various conditions.展开更多
基金the financial support to this research from the open fund of state key laboratory for modification of chemical fibers and polymer materials (LK1601)projects of education department of Shaanxi provincial government (15JF012)National Natural Science Foundation of China (51402180)
文摘In this study,the effect of hot calendering process on the microstructure and properties of poly(p-phenylene terephthalamide)(PPTA) paper-based materials was investigated.The microstructures of the fracture surface,crystalline structure,and single fiber strength of the PPTA paperbased materials as well as the different bonding behaviors between the PPTA fibers and PPTA fibrids obtained before and after the hot calendering process were examined.The results indicated that a high linear pressure would result in a limited improvement of the strength owing to the unimproved paper structure.The optimal values of tensile index and dielectric strength of 56.6 N·m/g and 27.6 kV/mm,respectively,could only be achieved with a synergistic effects of hot calendering temperature and linear pressure(240℃ and 110 k N/m,respectively).This result suggested it was possible to achieve a significant reinforcement and improvement in the interfacial bonding of functional PPTA paper-based materials,and avoid the formation of unexpected pleats and cracks in PPTA paper-based materials during the hot calendering process.
基金This research was supported by the National Natural Science Foundation of China(Nos.51872176 and 52172102)the Shaanxi Key Industry Innovation Chain Project(No.2021ZDLGY14-04)+1 种基金the Science Fund for Distinguished Young Scholars of Shaanxi Province(No.2019JC-32)the Fundamental Research Funds for the Central Universities(No.G2020KY05130).
文摘Paper-based friction materials are porous materials that exhibit anisotropy;they exhibit random pore sizes and quantities during their preparation,thereby rendering the control of their pore structure difficult.Composites with different pore structures are obtained by introducing chemical foaming technology during their preparation to regulate their pore structure and investigate the effect of pore structure on the properties of paper-based friction materials.The results indicate that the skeleton density,total pore area,average pore diameter,and porosity of the materials increase after chemical foaming treatment,showing a more open pore structure.The addition of an organic chemical foaming agent improves the curing degree of the matrix significantly.Consequently,the thermal stability of the materials improves significantly,and the hardness and elastic modulus of the matrix increase by 73.7%and 49.4%,respectively.The dynamic friction coefficient increases and the wear rate is reduced considerably after optimizing the pore structure.The wear rate,in particular,decreases by 47.7%from 2.83×10^(−8) to 1.48×10^(−8)cm^(3)/J as the foaming agent content increases.Most importantly,this study provides an effective method to regulate the pore structure of wet friction materials,which is conducive to achieving the desired tribological properties.
基金funded by the European Research Council(ERC)under the European Union's Horizon 2020 research and innovation program(grant agreement no.755655,ERC-StG 2017 project 2D-TOPSENSE)the Ministry of Science and Innovation(Spain)through the project PID2020-115566RB-I00+7 种基金the Distinguished Scientist Fellowship Program(DSFP)at King Saud University for partial funding of this workfinancial support from the Agencia Estatal de Investigación of Spain(Grants PID2019-106820RB,RTI2018-097180-B-100,and PGC2018-097018-B-I00)the Junta de Castilla y León(Grants SA256P18 and SA121P20),including funding by ERDF/FEDERfinancial support from Universidad Complutense de Madrid and European Commission(MSCA COFUND UNA4CAREER grant.Project number 4129252)financial support from MICINN(Spain)through the program Juan de la Cierva-Incorporaciónthe financial support of the Spanish Ministry of Industry and Competitiveness to the project MAT2017-84496-Rfinancial support from the Ministry of Science and Innovation(Spain)through the project RT2018-099794-B-100financial support from the Ministry de Universities(Spain)(Ph.D.contract FPU19/04224)
文摘We present a method to fabricate handcrafted thermoelectric devices on standard office paper substrates.The devices are based on thin films of WS_(2),Te,and BP(P-type semiconductors)and TiS_(3)and TiS_(2)(N-type semiconductors),deposited by simply rubbing powder of these materials against paper.The thermoelectric properties of these semiconducting films revealed maximum Seebeck coefficients of(+1.32±0.27)mV K^(-1)and(-0.82±0.15)mV K^(-1)for WS_(2)and TiS_(3),respectively.Additionally,Peltier elements were fabricated by interconnecting the P-and N-type films with graphite electrodes.A thermopower value up to 6.11 mV K^(-1)was obtained when the Peltier element were constructed with three junctions.The findings of this work show proof-of-concept devices to illustrate the potential application of semiconducting van der Waals materials in future thermoelectric power generation as well as temperature sensing for low-cost disposable electronic devices.
基金supported by National Natural Science Foundation of China under Grants (U1805261 and 22161142024)A~*STAR SERC AME Programmatic Fund (A18A7b0058)
文摘Human–machine interactions using deep-learning methods are important in the research of virtual reality,augmented reality,and metaverse.Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes,signal crosstalk,propagation delay,and demanding configuration requirements.Here,an all-inone multipoint touch sensor(AIOM touch sensor)with only two electrodes is reported.The AIOM touch sensor is efficiently constructed by gradient resistance elements,which can highly adapt to diverse application-dependent configurations.Combined with deep learning method,the AIOM touch sensor can be utilized to recognize,learn,and memorize human–machine interactions.A biometric verification system is built based on the AIOM touch sensor,which achieves a high identification accuracy of over 98%and offers a promising hybrid cyber security against password leaking.Diversiform human–machine interactions,including freely playing piano music and programmatically controlling a drone,demonstrate the high stability,rapid response time,and excellent spatiotemporally dynamic resolution of the AIOM touch sensor,which will promote significant development of interactive sensing interfaces between fingertips and virtual objects.
基金supported by the National Research Foundation of Korea(NRF)under Grant Nos.NRF-2017M3A9F1031229,NRF2017R1E1A1A01075439,and NRF-2019R1C1C1005668The Korea Environment Industry&Technology Institute(KEITI)through its Ecological Imitation-based Environmental Pollution Management Technology Development Project+1 种基金funded by the Korea Ministry of Environment(MOE)(2019002800009)And Korea University(Grant No.K2111511)。
文摘Nitrogen dioxide(NO_(2))is a representative toxicant in air pollution that mostly arises from the exhaust gas released by automobiles.It is related to various respiratory diseases such as pneumonia and sudden infant death syndrome.Additionally,because the toxicity of nitrogen dioxide is high in overpopulated areas(i.e.,a capital or metropolis),the development of simple,practical,and facile sensors is highly needed.This work presents a flexible and disposable paper-based NO_(2)sensor based on a reduced graphene oxide/chitosan(r GO/CS)composite.The synthesized r GO/CS composite can be easily flexed and deformed into various shapes,which are attributed to chitosan molecules that function as a dispersion and reduction agent and support material.In addition,this composite can be attached to paper owing to its adhesive property;hence it can be utilized in versatile applications in a disposable manner.By analyzing the conductive change of the r GO/CS composite when it reacts with NO_(2),we can detect nitrogen dioxide in a concentration range of 0–100 ppm with a detection limit of 1 ppm.Moreover,we performed NO_(2)detection in the exhaust gas released by automobiles using the r GO/CS composite for practical application.The results indicated that the r GO/CS composite has the potential to be used in feasible gas sensing as a facile and disposable sensor under various conditions.