期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
Hamilton-Souplet-Zhang's gradient estimates for two weighted nonlinear parabolic equations 被引量:1
1
作者 MA Bing-qing HUANG Guang-yue 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2017年第3期353-364,共12页
In this paper, we consider gradient estimates for positive solutions to the following weighted nonlinear parabolic equations on a complete smooth metric measure space with only Bakry-Émery Ricci tensor bounded be... In this paper, we consider gradient estimates for positive solutions to the following weighted nonlinear parabolic equations on a complete smooth metric measure space with only Bakry-Émery Ricci tensor bounded below: One is $${u_t} = {\Delta _f}u + au\log u + bu$$ with a, b two real constants, and another is $${u_t} = {\Delta _f}u + \lambda {u^\alpha }$$ with λ, α two real constants. We obtain local Hamilton-Souplet-Zhang type gradient estimates for the above two nonlinear parabolic equations. In particular, our estimates do not depend on any assumption on f. 展开更多
关键词 Hamilton’s gradient estimate Souplet-Zhang’s gradient estimate weighted nonlinear parabolic equation Bakry-Émery Ricci tensor
下载PDF
Blow-up rate estimate for degenerate parabolic equation with nonlinear gradient term
2
作者 张正策 王彪 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第6期787-796,共10页
Abstract In this paper, the blow-up rate is obtained for a porous medium equation with a nonlinear gradient term and a nonlinear boundary flux. By using a scaling method and regularity estimates of parabolic equations... Abstract In this paper, the blow-up rate is obtained for a porous medium equation with a nonlinear gradient term and a nonlinear boundary flux. By using a scaling method and regularity estimates of parabolic equations, the blow-up rate determined by the interaction between the diffusion and the boundary flux is obtained. Compared with previous results, the gradient term, whose exponent does not exceed two, does not affect the blow-up rate of the solutions. 展开更多
关键词 degenerate parabolic equation gradient BLOW-UP nonlinear boundary flux
下载PDF
Local Hamilton type Gradient Estimates and Harnack Inequalities for Nonlinear Parabolic Equations on Riemannian Manifolds
3
作者 Wen WANG Da-peng XIE Hui ZHOU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第2期539-546,共8页
In this paper,we prove a local Hamilton type gradient estimate for positive solution of the nonlinear parabolic equation ut(x,t)=Δu(x,t)+au(x,t) ln u(x,t)+bu^(α)(x,t),on M×(-∞,∞) with α∈R,where a and b are ... In this paper,we prove a local Hamilton type gradient estimate for positive solution of the nonlinear parabolic equation ut(x,t)=Δu(x,t)+au(x,t) ln u(x,t)+bu^(α)(x,t),on M×(-∞,∞) with α∈R,where a and b are constants.As application,the Harnack inequalities are derived. 展开更多
关键词 nonlinear parabolic equation gradient estimate Harnack inequality
原文传递
GRADIENT ESTIMATES AND LIOUVILLE THEOREMS FOR LINEAR AND NONLINEAR PARABOLIC EQUATIONS ON RIEMANNIAN MANIFOLDS 被引量:1
4
作者 朱晓宝 《Acta Mathematica Scientia》 SCIE CSCD 2016年第2期514-526,共13页
In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (△-e/et)u(x,t)+q(x,t)u^p(x,t)=0 and nonlinear parabolic equations (△-e/et)u(x,... In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (△-e/et)u(x,t)+q(x,t)u^p(x,t)=0 and nonlinear parabolic equations (△-e/et)u(x,t)+h(x,t)u^p(x,t)=0(p 〉 1) on Riemannian manifolds.As applications, we obtain some theorems of Liouville type for positive ancient solutions of such equations. Our results generalize that of Souplet-Zhang ([1], Bull. London Math. Soc. 38(2006), 1045-1053) and the author ([2], Nonlinear Anal. 74 (2011), 5141-5146). 展开更多
关键词 gradient estimate linear parabolic equation nonlinear parabolic equation Liouville type theorem
下载PDF
A Conservative Gradient Discretization Method for Parabolic Equations 被引量:1
5
作者 Huifang Zhou Zhiqiang Sheng Guangwei Yuan 《Advances in Applied Mathematics and Mechanics》 SCIE 2021年第1期232-260,共29页
In this paper,we propose a new conservative gradient discretization method(GDM)for one-dimensional parabolic partial differential equations(PDEs).We use the implicit Euler method for the temporal discretization and co... In this paper,we propose a new conservative gradient discretization method(GDM)for one-dimensional parabolic partial differential equations(PDEs).We use the implicit Euler method for the temporal discretization and conservative gradient discretization method for spatial discretization.The method is based on a new cellcentered meshes,and it is locally conservative.It has smaller truncation error than the classical finite volume method on uniform meshes.We use the framework of the gradient discretization method to analyze the stability and convergence.The numerical experiments show that the new method has second-order convergence.Moreover,it is more accurate than the classical finite volume method in flux error,L2 error and L¥error. 展开更多
关键词 gradient discretization method mass conservation parabolic equations
原文传递
Hamilton-type Gradient Estimates for a Nonlinear Parabolic Equation on Riemannian Manifolds 被引量:3
6
作者 Bin QIAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第6期1071-1078,共8页
Let (M, g) be a complete noncompact Riemannian manifold. In this note, we derive a local Hamilton-type gradient estimate for positive solution to a simple nonlinear parabolic equationon tu=△u+aulogu+qu on M ... Let (M, g) be a complete noncompact Riemannian manifold. In this note, we derive a local Hamilton-type gradient estimate for positive solution to a simple nonlinear parabolic equationon tu=△u+aulogu+qu on M × (0, ∞), where a is a constant and q is a C2 function. This result can be compared with the ones of Ma (JFA, 241, 374-382 (2006)) and Yang (PAMS, 136, 4095-4102 (2008)). Also, we obtain Hamilton's gradient estimate for the Schodinger equation. This can be compared with the result of Ruan (JGP, 58, 962-966 (2008)). 展开更多
关键词 Nonlinear parabolic equations Li-Yau inequalities Harnack differential inequalities gradient estimates
原文传递
Gradient Estimates and Harnack Inequality for a Nonlinear Parabolic Equation on Complete Manifolds 被引量:1
7
作者 Jiaxian Wu Yi-Hu Yang 《Communications in Mathematics and Statistics》 SCIE 2013年第4期437-464,共28页
Let M be a noncompact complete Riemannian manifold.In this paper,we consider the following nonlinear parabolic equation on M ut(x,t)=△u(x,t)+au(x,t)ln u(x,t)+bu^α(x,t).We prove a Li–Yau type gradient estimate for p... Let M be a noncompact complete Riemannian manifold.In this paper,we consider the following nonlinear parabolic equation on M ut(x,t)=△u(x,t)+au(x,t)ln u(x,t)+bu^α(x,t).We prove a Li–Yau type gradient estimate for positive solutions to the above equation;as an application,we also derive the corresponding Harnack inequality.These results generalize the corresponding ones proved by Li(J Funct Anal 100:233–256,1991). 展开更多
关键词 gradient estimate Ricci curvature Harnack inequality Nonlinear parabolic equation
原文传递
Gradient Estimates for Parabolic Equations in Generalized Weighted Morrey Spaces
8
作者 Vagif GULIYEV Shamsiyya MURADOVA +1 位作者 Mehriban OMAROVA Lubomira SOFTOVA 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第8期911-924,共14页
We consider the Cauchy-Dirichlet problem for linear divergence form parabolic operators in bounded Reifenberg flat domain. The coefficients supposed to be only measurable in one of the space variables and small BMO wi... We consider the Cauchy-Dirichlet problem for linear divergence form parabolic operators in bounded Reifenberg flat domain. The coefficients supposed to be only measurable in one of the space variables and small BMO with respect to the others. We obtain Calderon-Zygmund type estimate for the gradient of the solution in generalized weighted Morrey spaces with Muckenhoupt weight. 展开更多
关键词 Generalized weighted Morrey spaces parabolic equations Cauchy-Dirichlet problem measurable coefficients BMO gradient estimates
原文传递
Gradient estimates and Harnack inequalities for a Yamabe-type parabolic equation under the Yamabe flow
9
作者 Liangdi Zhang 《Science China Mathematics》 SCIE CSCD 2021年第6期1201-1230,共30页
In this paper, we derive a series of gradient estimates and Harnack inequalities for positive solutions of a Yamabe-type parabolic partial differential equation (△-■t)u=pu+qu^(a+1) under the Yamabe flow. Here p,q∈C... In this paper, we derive a series of gradient estimates and Harnack inequalities for positive solutions of a Yamabe-type parabolic partial differential equation (△-■t)u=pu+qu^(a+1) under the Yamabe flow. Here p,q∈C^(2,1)(M^(n)×[0,T]) and a is a positive constant. 展开更多
关键词 gradient estimate Harnack inequality Yamabe-type parabolic equation Yamabe flow
原文传递
Harnack Differential Inequalities for the Parabolic Equation u_t= LF(u) on Riemannian Manifolds and Applications
10
作者 wen wang 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第5期620-634,共15页
In this paper, let(M~n, g) be an n-dimensional complete Riemannian manifold with the mdimensional Bakry–mery Ricci curvature bounded below. By using the maximum principle, we first prove a Li–Yau type Harnack differ... In this paper, let(M~n, g) be an n-dimensional complete Riemannian manifold with the mdimensional Bakry–mery Ricci curvature bounded below. By using the maximum principle, we first prove a Li–Yau type Harnack differential inequality for positive solutions to the parabolic equation u= LF(u)=ΔF(u)-f·F(u),on compact Riemannian manifolds Mn, where F∈C~2(0, ∞), F>0 and f is a C~2-smooth function defined on M~n. As application, the Harnack differential inequalities for fast diffusion type equation and porous media type equation are derived. On the other hand, we derive a local Hamilton type gradient estimate for positive solutions of the degenerate parabolic equation on complete Riemannian manifolds. As application, related local Hamilton type gradient estimate and Harnack inequality for fast dfiffusion type equation are established. Our results generalize some known results. 展开更多
关键词 parabolic equation Li–Yau type Harnack differential inequality local Hamilton type gradient estimate fast diffusion equation Porous media equation
原文传递
采用溶胶-凝胶法制备梯度光学功能材料 被引量:6
11
作者 刘泽 李永祥 吴冲若 《东南大学学报(自然科学版)》 EI CAS CSCD 1998年第2期21-25,共5页
采用溶胶凝胶制备抛物线型梯度折射率材料,材料的折射率曲线由折射率调制元素在湿凝胶中的化学反应和扩散产生.本文详述了材料的制备过程。
关键词 折射率 梯度 光学功能材料 溶胶-凝胶法
下载PDF
基于数值模拟大气环境预测海上微波传播损耗 被引量:3
12
作者 王红光 韩杰 +1 位作者 王波 吴振森 《系统工程与电子技术》 EI CSCD 北大核心 2012年第3期457-461,共5页
针对数值天气预报模式应用于电磁波传播预测的性能,比较数值模拟和无线电探空剖面,计算并对比以两者为输入的路径损耗。对于近地面1km大气修正折射率梯度,两者间误差均值和标准差分别为4.4M/km和16.6M/km。通过在典型频点上的传播计算,... 针对数值天气预报模式应用于电磁波传播预测的性能,比较数值模拟和无线电探空剖面,计算并对比以两者为输入的路径损耗。对于近地面1km大气修正折射率梯度,两者间误差均值和标准差分别为4.4M/km和16.6M/km。通过在典型频点上的传播计算,发现频率较低或距离较近时,路径传播损耗误差较小,随着频率或距离的增加,误差逐渐增大。结果表明了数值天气预报技术在海上电波传播特性预测中的适用性。 展开更多
关键词 折射指数梯度 第五代中尺度数值模式 抛物方程 路径传播损耗
下载PDF
含有非线性梯度项的退化抛物方程解的爆破率估计 被引量:2
13
作者 张正策 王彪 《应用数学和力学》 CSCD 北大核心 2010年第6期756-764,共9页
利用尺度变换方法和抛物方程的正则性估计,证明了一类含有非线性梯度项的退化多孔介质方程解的爆破率,它是由扩散项和边界流相互作用决定的.与以前有关的结论比较,有趣的发现是,次数不超过2的梯度项不会影响解的爆破率.
关键词 退化抛物方程 梯度 爆破 非线性边界流
下载PDF
带梯度项的非线性抛物方程正解的爆破 被引量:4
14
作者 陈明玉 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期153-156,共4页
研究了RN中一般区域上的一族带非线性梯度项的非线性退缩抛物方程解的blow-up性质.通过构造适当的辅助函数,利用特征函数法和不等式技巧,给出了其齐次Dirichlet边值问题的正解产生blow-up的充分条件;利用能量方法,证明了其Cauchy问题非... 研究了RN中一般区域上的一族带非线性梯度项的非线性退缩抛物方程解的blow-up性质.通过构造适当的辅助函数,利用特征函数法和不等式技巧,给出了其齐次Dirichlet边值问题的正解产生blow-up的充分条件;利用能量方法,证明了其Cauchy问题非平凡整体解的不存在性.本文的方法也适用于研究其它带非线性源的退缩非线性抛物方程解的blow-up问题. 展开更多
关键词 非线性抛物方程 梯度项 正解blow—up
下载PDF
一类半线性抛物边值问题的最大值原理 被引量:2
15
作者 丁俊堂 《数学物理学报(A辑)》 CSCD 北大核心 2004年第1期63-70,共8页
文中构造了一类具有 Dirichlet或 Neumann边界条件的半线性抛物方程 u,t=Δu+ f( x,u,q,t) ( q=| u| 2 )的解的一个辅助函数 ,对其使用 Hopf最大值原理和黎曼几何理论 ,从而获得了该函数的最大值原理 ,据此原理获得了梯度 q和解
关键词 半线性抛物方程 梯度 最大值原理
下载PDF
一类非线性抛物方程解的爆破与梯度爆破 被引量:1
16
作者 李玉环 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期154-156,共3页
研究了具有任意Dirichlet边界值的一类含有梯度与非常系数项的非线性抛物方程,证明了方程解的爆破,以及初始值足够大时解的梯度也爆破.
关键词 爆破 梯度爆破 非线性抛物方程
下载PDF
一类具有非齐次边界条件的非线性抛物方程解的梯度爆破问题 被引量:1
17
作者 刘浏 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第5期885-888,共4页
讨论了如下一类带有齐次边界条件的非线性抛物方程ut-△u=|u|p+a(x)uq解的爆破问题,给出了方程解梯度爆破和L∞爆破的条件.
关键词 非线性抛物方程 非齐次边界条件 梯度爆破 L^∞爆破
下载PDF
带梯度项的非线性双重退缩抛物方程解的耗竭 被引量:1
18
作者 陈明玉 《漳州师范学院学报(自然科学版)》 2001年第3期11-15,共5页
本文研究带梯度项的非线性双重退缩抛物方程第一初边值问题解的耗竭性,应用能量方法,我们给出了解在有限时间内耗竭的充分条件。
关键词 双重退缩抛物方程 梯度项 耗竭
下载PDF
有压力梯度非平行边界层稳定性的研究
19
作者 陆昌根 周扬屏 胡贵友 《弹道学报》 CSCD 北大核心 2003年第2期89-93,共5页
该文从抛物化稳定性方程出发,采用从上游往下游递推的数值方法,对非平行边界层稳定性问题进行了数值计算和分析。为更好反映平板边界层流动的物理特征和本质,该文同时考虑到主流的非平行性和压力梯度的作用。数值计算结果表明,顺压梯度... 该文从抛物化稳定性方程出发,采用从上游往下游递推的数值方法,对非平行边界层稳定性问题进行了数值计算和分析。为更好反映平板边界层流动的物理特征和本质,该文同时考虑到主流的非平行性和压力梯度的作用。数值计算结果表明,顺压梯度有明显的延缓转捩作用,逆压梯度有较强的不稳定作用。数值结果更接近于实验结果。 展开更多
关键词 抛物化稳定性方程 非平行性 压力梯度
下载PDF
Ricci流上一类非线性抛物方程的梯度估计
20
作者 黄广月 曾凡奇 《河南师范大学学报(自然科学版)》 CAS 北大核心 2014年第2期1-6,共6页
考虑Ricci流(Mn,g(t))上的非线性抛物方程正解的梯度估计:ut=Δu+auln u+bu,其中a,b是两个实常数.作为应用,得到了一些Harnack不等式.
关键词 梯度估计 非线性抛物方程 HARNACK不等式 RICCI流
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部