This article deals with the degenerate parabolic equations in exterior domains and with inhomogeneous Dirichlet boundary conditions. We obtain that pc = (σ + m )n / ( n-σ- 2 ) is its critical exponent provided ...This article deals with the degenerate parabolic equations in exterior domains and with inhomogeneous Dirichlet boundary conditions. We obtain that pc = (σ + m )n / ( n-σ- 2 ) is its critical exponent provided max{-1, [ (1- m )n- 2] / ( n + l ) } 〈 σ 〈 n- 2. This critical exponent is not the same as that for the corresponding equations with the boundary value 0, but is more closely tied to the critical exponent of the elliptic type degenerate equations. Futhermore, we demonstrate that if max(1, σ + m) 〈 p 〈 pc, then every positive solution of the equations blows up in finite time; whereas for p 〉 pc, the equations admit global positive solutions for some boundary values and initial data. Meantime, we also demonstrate that its positive solutions blow up in finite time provided n〈σ+2.展开更多
In this paper,we study the initial-boundary value problem for the semilinear parabolic equations ut-△Xu=|u|p-1u,where X=(X1,X2,…,Xm) is a system of real smooth vector fields which satisfy the H?rmander’s conditio...In this paper,we study the initial-boundary value problem for the semilinear parabolic equations ut-△Xu=|u|p-1u,where X=(X1,X2,…,Xm) is a system of real smooth vector fields which satisfy the H?rmander’s condition,and △X=∑j=1m Xj2 is a finitely degenerate elliptic operator.Using potential well method,we first prove the invariance of some sets and vacuum isolating of solutions.Finally,by the Galerkin method and the concavity method we show the global existence and blow-up in finite time of solutions with low initial energy or critical initial energy,and also we discuss the asymptotic behavior of the global solutions.展开更多
This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utiliz...This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.展开更多
We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
This paper deals with the existence and nonexistence of global positive solutions of the following quasilinear parabolic equations:u t=1m△u m-u n, x∈Ω,t>0 1m·u mv=u p,x∈Ω,t>0 u(x,0)=u 0(x)>0,x∈Ω-w...This paper deals with the existence and nonexistence of global positive solutions of the following quasilinear parabolic equations:u t=1m△u m-u n, x∈Ω,t>0 1m·u mv=u p,x∈Ω,t>0 u(x,0)=u 0(x)>0,x∈Ω-where Ω∈R N is a bounded domain with smooth boundary Ω,m,n,p are positive constants, γ is the outward normal vector. The necessary and sufficient conditions for the global existence of solutions are obtained.展开更多
We study the Dirichlet problem associated to strongly nonlinear parabolic equations involving p(x) structure in W;L;(Q). We prove the existence of weak solutions by applying Galerkin’s approximation method.
We study the existence of solutions to the following parabolic equation{ut-△pu=λ/|x|s|u|q-2u,(x,t)∈Ω×(0,∞),u(x,0)=f(x),x∈Ω,u(x,t)=0,(x,t)∈Ω×(0,∞),(P)}where-△pu ≡-div(|▽u|...We study the existence of solutions to the following parabolic equation{ut-△pu=λ/|x|s|u|q-2u,(x,t)∈Ω×(0,∞),u(x,0)=f(x),x∈Ω,u(x,t)=0,(x,t)∈Ω×(0,∞),(P)}where-△pu ≡-div(|▽u|p-2▽u),1〈p〈N,0〈s≤p,p≤q≤p*(s) = N-s/N-pp,Ω is a bounded domain in RN such that 0∈Ω with a C1 boundaryΩ,f≥0 satisfying some convenient regularity assumptions.The analysis reveals that the existence of solutions for(P) depends on p,q,s in general,and on the relation between λ and the best constant in the Sobolev-Hardy inequality.展开更多
In this paper, spectral and pseudospectral methods are applied to both time and space variables for parabolic equations. Spectral and pseudospectral schemes are given, and error estimates are obtained for approximate ...In this paper, spectral and pseudospectral methods are applied to both time and space variables for parabolic equations. Spectral and pseudospectral schemes are given, and error estimates are obtained for approximate solutions.展开更多
According to the variational analysis and the potential well argument, we get the optimal conditions of global existence and blow-up for a type of nonlinear parabolic equations. Furthermore, we give its application in...According to the variational analysis and the potential well argument, we get the optimal conditions of global existence and blow-up for a type of nonlinear parabolic equations. Furthermore, we give its application in the instability of the steady states.展开更多
In this paper,we study the initial-boundary value problem for a class of singular parabolic equations.Under some conditions,we obtain the existence and asymptotic behavior of solutions to the problem by parabolic regu...In this paper,we study the initial-boundary value problem for a class of singular parabolic equations.Under some conditions,we obtain the existence and asymptotic behavior of solutions to the problem by parabolic regularization method and the sub-super solutions method.As a byproduct,we prove the existence of solutions to some problems with gradient terms,which blow up on the boundary.展开更多
We consider an initial-boundary value problem for a p-biharmonic parabolic equation. Under some assumptions on the initial value, we construct approximate solutions by the discrete-time method. By means of uniform est...We consider an initial-boundary value problem for a p-biharmonic parabolic equation. Under some assumptions on the initial value, we construct approximate solutions by the discrete-time method. By means of uniform estimates on solutions of the time-difference equations, we establish the existence of weak solutions, and also discuss the uniqueness.展开更多
In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate init...In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate initial and Dirichlet boundary conditions, where h > 0, k > 0 are grid sizes in space and time-directions, respectively. The cubic spline approximation produces at each time level a spline function which may be used to obtain the solution at any point in the range of the space variable. The proposed cubic spline method is applicable to parabolic equations having singularity. The stability analysis for diffusion- convection equation shows the unconditionally stable character of the cubic spline method. The numerical tests are performed and comparative results are provided to illustrate the usefulness of the proposed method.展开更多
In the paper, existence results for degenerate parabolic boundary value problems of higher order are proved. The weak solution is sought in a suitable weighted Sobolev space by using the generalized degree theory.
In this paper, we study the initial-boundary value problem for the semilinear pseudoparabolic equations ut —△xut —△xu =|u|^p-1u, where X =(X1, X2,..., Xm) is a system of real smooth vector fields which satisfy the...In this paper, we study the initial-boundary value problem for the semilinear pseudoparabolic equations ut —△xut —△xu =|u|^p-1u, where X =(X1, X2,..., Xm) is a system of real smooth vector fields which satisfy the Hormander's condition, and △x =∑j=1^m Xj^2 is a finitely degenera te elliptic operator. By using potential well method, we first prove the invariance of some sets and vacuum isolating of solutions. Then, by the Galerkin method and the concavity method we show the global existence and blow-up in finite time of solutions with low initial energy or critical initial energy. The asymptotic behavior of the global solutions and a lower bound for blow-up time of local solution are also given.展开更多
In this paper, we will show the existence and certain decay estimate of the global solutions for the initial-boundary value problemin the smooth bounded domain Ω=Rn. n≥2.
In this paper, we study the existence and nonuniqueness of weak solutions of the initial and boundary value problem for ut= uσdiv(|△u|p-2△u) with σ≥1. Localization property of weak solutions is also discussed.
This paper is mainly focused on the global existence and extinction behaviour of the solutions to a doubly nonlinear parabolic equation with logarithmic nonlinearity. By making use of energy estimates method and a ser...This paper is mainly focused on the global existence and extinction behaviour of the solutions to a doubly nonlinear parabolic equation with logarithmic nonlinearity. By making use of energy estimates method and a series of ordinary differential inequalities, the global existence of the solution is obtained. Moreover, we give the sufficient conditions on the occurrence(or absence)of the extinction behaviour.展开更多
In this paper,we consider an initial boundary value problem of m-Laplacian parabolic equation arising in various physical models.We tackle this problem at three different initial energy levels.For the sub-critical ini...In this paper,we consider an initial boundary value problem of m-Laplacian parabolic equation arising in various physical models.We tackle this problem at three different initial energy levels.For the sub-critical initial energy,we obtain the blow-up result and estimate the lower and upper bounds of the blow-up time.For the critical initial energy,we show the global existence,asymptotic behavior,finite time blow-up and the lower bound of the blow-up time.For the sup-critical initial energy,we prove the finite time blow-up and estimate the lower and upper bounds of the blow-up time.展开更多
基金supported by the National Natural Science Foundations of China(10971061)Hunan Provincial Natural Science Foundation of China (09JJ6013)
文摘This article deals with the degenerate parabolic equations in exterior domains and with inhomogeneous Dirichlet boundary conditions. We obtain that pc = (σ + m )n / ( n-σ- 2 ) is its critical exponent provided max{-1, [ (1- m )n- 2] / ( n + l ) } 〈 σ 〈 n- 2. This critical exponent is not the same as that for the corresponding equations with the boundary value 0, but is more closely tied to the critical exponent of the elliptic type degenerate equations. Futhermore, we demonstrate that if max(1, σ + m) 〈 p 〈 pc, then every positive solution of the equations blows up in finite time; whereas for p 〉 pc, the equations admit global positive solutions for some boundary values and initial data. Meantime, we also demonstrate that its positive solutions blow up in finite time provided n〈σ+2.
基金supported by National Natural Science Foundation of China(11631011 and 11626251)
文摘In this paper,we study the initial-boundary value problem for the semilinear parabolic equations ut-△Xu=|u|p-1u,where X=(X1,X2,…,Xm) is a system of real smooth vector fields which satisfy the H?rmander’s condition,and △X=∑j=1m Xj2 is a finitely degenerate elliptic operator.Using potential well method,we first prove the invariance of some sets and vacuum isolating of solutions.Finally,by the Galerkin method and the concavity method we show the global existence and blow-up in finite time of solutions with low initial energy or critical initial energy,and also we discuss the asymptotic behavior of the global solutions.
文摘This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
文摘This paper deals with the existence and nonexistence of global positive solutions of the following quasilinear parabolic equations:u t=1m△u m-u n, x∈Ω,t>0 1m·u mv=u p,x∈Ω,t>0 u(x,0)=u 0(x)>0,x∈Ω-where Ω∈R N is a bounded domain with smooth boundary Ω,m,n,p are positive constants, γ is the outward normal vector. The necessary and sufficient conditions for the global existence of solutions are obtained.
文摘We study the Dirichlet problem associated to strongly nonlinear parabolic equations involving p(x) structure in W;L;(Q). We prove the existence of weak solutions by applying Galerkin’s approximation method.
基金supported by NPU Foundation for Fundamental Research (NPU-FFR-JC201124)NSF of China (10871157,11001221,11002110)Specialized Research Fund for the Doctoral Program in Higher Education (200806990032)
文摘We study the existence of solutions to the following parabolic equation{ut-△pu=λ/|x|s|u|q-2u,(x,t)∈Ω×(0,∞),u(x,0)=f(x),x∈Ω,u(x,t)=0,(x,t)∈Ω×(0,∞),(P)}where-△pu ≡-div(|▽u|p-2▽u),1〈p〈N,0〈s≤p,p≤q≤p*(s) = N-s/N-pp,Ω is a bounded domain in RN such that 0∈Ω with a C1 boundaryΩ,f≥0 satisfying some convenient regularity assumptions.The analysis reveals that the existence of solutions for(P) depends on p,q,s in general,and on the relation between λ and the best constant in the Sobolev-Hardy inequality.
文摘In this paper, spectral and pseudospectral methods are applied to both time and space variables for parabolic equations. Spectral and pseudospectral schemes are given, and error estimates are obtained for approximate solutions.
基金supported by National Natural Science Foundation of China(11126336 and 11201324)New Teachers’Fund for Doctor Stations,Ministry of Education(20115134120001)+1 种基金Fok Ying Tuny Education Foundation(141114)Youth Fund of Sichuan Province(2013JQ0027)
文摘According to the variational analysis and the potential well argument, we get the optimal conditions of global existence and blow-up for a type of nonlinear parabolic equations. Furthermore, we give its application in the instability of the steady states.
基金Supported by Natural Science Foundation of Youth and Tianyuan (11001177,11026156,10926141)Startup Program of Shenzhen University
文摘In this paper,we study the initial-boundary value problem for a class of singular parabolic equations.Under some conditions,we obtain the existence and asymptotic behavior of solutions to the problem by parabolic regularization method and the sub-super solutions method.As a byproduct,we prove the existence of solutions to some problems with gradient terms,which blow up on the boundary.
文摘We consider an initial-boundary value problem for a p-biharmonic parabolic equation. Under some assumptions on the initial value, we construct approximate solutions by the discrete-time method. By means of uniform estimates on solutions of the time-difference equations, we establish the existence of weak solutions, and also discuss the uniqueness.
文摘In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate initial and Dirichlet boundary conditions, where h > 0, k > 0 are grid sizes in space and time-directions, respectively. The cubic spline approximation produces at each time level a spline function which may be used to obtain the solution at any point in the range of the space variable. The proposed cubic spline method is applicable to parabolic equations having singularity. The stability analysis for diffusion- convection equation shows the unconditionally stable character of the cubic spline method. The numerical tests are performed and comparative results are provided to illustrate the usefulness of the proposed method.
基金Supported by the funds of the State Educational Commission of China for returned scholars from abroad
文摘In the paper, existence results for degenerate parabolic boundary value problems of higher order are proved. The weak solution is sought in a suitable weighted Sobolev space by using the generalized degree theory.
基金Supported by National Natural Science Foundation of China(Grants Nos.11631011 and 11626251)
文摘In this paper, we study the initial-boundary value problem for the semilinear pseudoparabolic equations ut —△xut —△xu =|u|^p-1u, where X =(X1, X2,..., Xm) is a system of real smooth vector fields which satisfy the Hormander's condition, and △x =∑j=1^m Xj^2 is a finitely degenera te elliptic operator. By using potential well method, we first prove the invariance of some sets and vacuum isolating of solutions. Then, by the Galerkin method and the concavity method we show the global existence and blow-up in finite time of solutions with low initial energy or critical initial energy. The asymptotic behavior of the global solutions and a lower bound for blow-up time of local solution are also given.
文摘In this paper, we will show the existence and certain decay estimate of the global solutions for the initial-boundary value problemin the smooth bounded domain Ω=Rn. n≥2.
基金The Young Teachers Foundation (420010302318) of Jilin University.
文摘In this paper, we study the existence and nonuniqueness of weak solutions of the initial and boundary value problem for ut= uσdiv(|△u|p-2△u) with σ≥1. Localization property of weak solutions is also discussed.
基金Supported by the Project of Education Department of Hunan Province (20A174)。
文摘This paper is mainly focused on the global existence and extinction behaviour of the solutions to a doubly nonlinear parabolic equation with logarithmic nonlinearity. By making use of energy estimates method and a series of ordinary differential inequalities, the global existence of the solution is obtained. Moreover, we give the sufficient conditions on the occurrence(or absence)of the extinction behaviour.
基金Supported by the National Natural Science Foundation of China(Grant No.12271122)the China Postdoctoral Science Foundation(Grant No.2013M540270)the Fundamental Research Funds for the Central Universities。
文摘In this paper,we consider an initial boundary value problem of m-Laplacian parabolic equation arising in various physical models.We tackle this problem at three different initial energy levels.For the sub-critical initial energy,we obtain the blow-up result and estimate the lower and upper bounds of the blow-up time.For the critical initial energy,we show the global existence,asymptotic behavior,finite time blow-up and the lower bound of the blow-up time.For the sup-critical initial energy,we prove the finite time blow-up and estimate the lower and upper bounds of the blow-up time.