期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dependence of Gravity Induced Absorption Changes on the Earth’s Magnetic Field as Measured during Parabolic Flight Campaigns
1
作者 Werner Schmidt 《Journal of Modern Physics》 2013年第11期1546-1553,共8页
Various spectroscopic experiments performed on the AIRBUS ZERO G—located in Bordeaux, France—in the years 2002 to 2012 exhibit minute optical reflection/absorption changes (GIACs) as a result of gravitational change... Various spectroscopic experiments performed on the AIRBUS ZERO G—located in Bordeaux, France—in the years 2002 to 2012 exhibit minute optical reflection/absorption changes (GIACs) as a result of gravitational changes between 0 and 1.8 g in various biological species such as maize, oats, Arabidopsis and particularly Phycomyces sporangiophores. During a flight day, the AIRBUS ZERO G conducts 31 parabolas, each of which lasts about three minutes including a period of 22 s of weightlessness. So far, we participated in 11 parabolic flight campaigns including more than 1000 parabolas performing various kinds of experiments. During our campaigns, we observed an unexplainable variability of the measuring signals (GIACs). Using GPS-positioning systems and three dimensional magnetic field sensors, these finally were traced back to the changing earth’s magnetic field associated with the various flight directions. This is the first time that the interaction of gravity and the Earth’ magnetic field in the primary induction process in living system has been observed. 展开更多
关键词 MDWS(Micro Dual Wavelength Spectrometer) GIAC(Gravity Induced Absorption Change) AIRBUS-300-ZERO-G parabolic flight Micro-and Hypergravity Three Dimensional Earth’s Magnetic Field Global Positioning System(GPS) Google Earth
下载PDF
Progress Update in Space Cell Mechano-biological Coupling
2
作者 LONG Mian SUN Shujin +2 位作者 LI Ning LÜDongyuan GAO Yuxin 《空间科学学报》 CAS CSCD 北大核心 2020年第5期935-936,共2页
Recent progresses in 2018–2019 from space experiments onboard SJ-10 recoverable satellite and on parabolic flight were summarized,mainly focusing on cell mechano-biological coupling under microgravity.In the meantime... Recent progresses in 2018–2019 from space experiments onboard SJ-10 recoverable satellite and on parabolic flight were summarized,mainly focusing on cell mechano-biological coupling under microgravity.In the meantime,technical pre-research and experimental system design for the biomechanics research platform on China Space Station was carried out and updated. 展开更多
关键词 MICROGRAVITY SJ-10 satellite parabolic flight Endothelial cells Mesenchymal stem cells HEPATOCYTES MECHANOTRANSDUCTION China Space Station
下载PDF
Control performance simulation and tests for Microgravity Active vibration Isolation System onboard the Tianzhou-1 cargo spacecraft 被引量:3
3
作者 Wei Liu Yongkang Zhang +1 位作者 Zongfeng Li Wenbo Dong 《Astrodynamics》 2018年第4期339-360,共22页
The Microgravity Active vibration Isolation System(MAIS),which was onboard China’s first cargo-spacecraft Tianzhou-1 launched on April 20,2017,aims to provide high-level microgravity at an order of 10^(-5)–10^(-6)g ... The Microgravity Active vibration Isolation System(MAIS),which was onboard China’s first cargo-spacecraft Tianzhou-1 launched on April 20,2017,aims to provide high-level microgravity at an order of 10^(-5)–10^(-6)g for specific scientific experiments.MAIS is mainly composed of a stator and a floater,and payloads are mounted on the floater.Sensing relative motion with respect to the stator fixed on the spacecraft,the floater is isolated from vibration on the stator via control forces and torques generated by electromagnetic actuators.This isolation results in a high-level microgravity environment.Before MAIS was launched into space,its control performance had been simulated on computers and tested by air-bearing platform levitation and aircraft parabolic flight.This article first presents an overview of the MAIS’s hardware system,particularly system structure,measurement sensors,and control actuators.Its system dynamics,state estimation,and control laws are then discussed,followed by the results of computer simulation and engineering tests,including the test of the six-degree-of-freedom motion by aircraft parabolic flight.Simulation and test results verify the accuracy of the control strategy design,effectiveness of the control algorithms,and performance of the entire control system,paving the way for operation of MAIS in space.This article also presents the steps recommended for the control performance simulation and tests of MAIS-like devices.These devices are expected to be used on China’s Space Station for various scientific experiments that require a high-level microgravity environment. 展开更多
关键词 Microgravity Active vibration Isolation System system dynamics modelling controller design vibration attenuation performance computer simulation air-bearing platform levitation aircraft parabolic flight
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部