By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical res...By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical results indicate that the higher-order effects can badly distort self-similar parabolic pulse shape and optical spectrum, and at the same time the peak shift and oscillation appear, while the pulse still reveals highly linear chirp but grows into asymmetry. The influence of different higher-order effects on self-similar parabolic pulse propagation has been analysed. It shows that the self-steepening plays a more important role. We can manipulate the geometrical parameters of the microstructured fibre amplifier to gain a suitable dispersion and nonlinearity coefficient which will keep high-quality self-similar parabolic pulse propagation. These results are significant for the further study of self-similar parabolic pulse propagation.展开更多
We study theoretically the spectral intensity evolutions of the femtosecond Gaussian and parabolic pulses with different initial pulse energies and compare the nonlinear compressions of these pulses based on a meter-l...We study theoretically the spectral intensity evolutions of the femtosecond Gaussian and parabolic pulses with different initial pulse energies and compare the nonlinear compressions of these pulses based on a meter-long hollow-core fiber filled with neon for different initial pulse durations. The pulses are first coupled into gas-filled hollow-core fiber for spectrum broadening, then compressed by the optimal chirp compensation. The parabolic pulse possesses a shorter pulse duration, larger peak power, and cleaner wings than Gaussian pulse. The properties are useful for compressing the pulses and thus generating the high-energy, short-duration pulses.展开更多
The evolutions of the pulses propagating in decreasing and increasing gain distributed fiber amplifiers with finite gain bandwidths are investigated by simulations with the nonlinear SchrSdinger equation. The results ...The evolutions of the pulses propagating in decreasing and increasing gain distributed fiber amplifiers with finite gain bandwidths are investigated by simulations with the nonlinear SchrSdinger equation. The results show that the parabolic pulse propagations in both the decreasing and the increasing gain amplifiers are restricted by the finite gain bandwidth. For a given input pulse, by choosing a small initial gain coefficient and gain variation rate, the whole gain for the pulse amplification limited by the gain bandwidth may be higher, which is helpful for the enhancement of the output linearly chirped pulse energy. Compared to the decreasing gain distributed fiber amplifier, the increasing gain distributed amplifier may be more conducive to suppress the pulse spectral broadening and increase the critical amplifier length for achieving a larger output linearly chirped pulse energy.展开更多
Employing the technique of symmetry reduction of analytic method, we solve the Ginzburg-Landau equation with varying nonlinear, dispersion, gain coefficients, and gain dispersion which originates from the limiting eff...Employing the technique of symmetry reduction of analytic method, we solve the Ginzburg-Landau equation with varying nonlinear, dispersion, gain coefficients, and gain dispersion which originates from the limiting effect of transition bandwidth in the realistic doped fibres. The parabolic asymptotic self-similar analytical solutions in gain medium of the normal GVD is found for the first time to our best knowledge. The evolution of pulse amplitude, strict linear phase chirp and effective temporal width are given with self-similarity results in longitudinal nonlinearity distribution and longitudinal gain fibre. These analytical solutions are in good agreement with the numerical simulations. Furthermore, we theoretically prove that pulse evolution has the characteristics of parabolic asymptotic self-similarity in doped ions dipole gain fibres.展开更多
基金Project supported by the National Science Foundation of Guangdong Province,China(Grant No04010397)
文摘By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical results indicate that the higher-order effects can badly distort self-similar parabolic pulse shape and optical spectrum, and at the same time the peak shift and oscillation appear, while the pulse still reveals highly linear chirp but grows into asymmetry. The influence of different higher-order effects on self-similar parabolic pulse propagation has been analysed. It shows that the self-steepening plays a more important role. We can manipulate the geometrical parameters of the microstructured fibre amplifier to gain a suitable dispersion and nonlinearity coefficient which will keep high-quality self-similar parabolic pulse propagation. These results are significant for the further study of self-similar parabolic pulse propagation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61221064,61078037,11127901,and 11134010)the National Basic Research Program of China(Grant No.2011CB808101)+2 种基金the Funds from the Commission of Science and Technology of Shanghai,China(Grant No.12dz1100700)the Natural Science Foundation of Shanghai,China(Grant No.13ZR1414800)the International S&T Cooperation Program of China(Grant No.2011DFA11300)
文摘We study theoretically the spectral intensity evolutions of the femtosecond Gaussian and parabolic pulses with different initial pulse energies and compare the nonlinear compressions of these pulses based on a meter-long hollow-core fiber filled with neon for different initial pulse durations. The pulses are first coupled into gas-filled hollow-core fiber for spectrum broadening, then compressed by the optimal chirp compensation. The parabolic pulse possesses a shorter pulse duration, larger peak power, and cleaner wings than Gaussian pulse. The properties are useful for compressing the pulses and thus generating the high-energy, short-duration pulses.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA030203)the National Basic Research Program of China (Grant No. 2007CB936603)
文摘The evolutions of the pulses propagating in decreasing and increasing gain distributed fiber amplifiers with finite gain bandwidths are investigated by simulations with the nonlinear SchrSdinger equation. The results show that the parabolic pulse propagations in both the decreasing and the increasing gain amplifiers are restricted by the finite gain bandwidth. For a given input pulse, by choosing a small initial gain coefficient and gain variation rate, the whole gain for the pulse amplification limited by the gain bandwidth may be higher, which is helpful for the enhancement of the output linearly chirped pulse energy. Compared to the decreasing gain distributed fiber amplifier, the increasing gain distributed amplifier may be more conducive to suppress the pulse spectral broadening and increase the critical amplifier length for achieving a larger output linearly chirped pulse energy.
基金Supported by the Natural Science Foundation of Guangdong Province under Grant No 04010397.
文摘Employing the technique of symmetry reduction of analytic method, we solve the Ginzburg-Landau equation with varying nonlinear, dispersion, gain coefficients, and gain dispersion which originates from the limiting effect of transition bandwidth in the realistic doped fibres. The parabolic asymptotic self-similar analytical solutions in gain medium of the normal GVD is found for the first time to our best knowledge. The evolution of pulse amplitude, strict linear phase chirp and effective temporal width are given with self-similarity results in longitudinal nonlinearity distribution and longitudinal gain fibre. These analytical solutions are in good agreement with the numerical simulations. Furthermore, we theoretically prove that pulse evolution has the characteristics of parabolic asymptotic self-similarity in doped ions dipole gain fibres.