In this paper,we study the existence and regularity of travelling wave front solutions for some degenerate parabolic equations (u^m/m)t=u_(xx)+u^nf(u),where m,n>0 and f(u)~1-u.We show that the existence and regula...In this paper,we study the existence and regularity of travelling wave front solutions for some degenerate parabolic equations (u^m/m)t=u_(xx)+u^nf(u),where m,n>0 and f(u)~1-u.We show that the existence and regularity of travelling wave front solutions depend on the parameters m,n and the wave speed c.展开更多
This paper addresses the problem of estimating lower atmospheric refractivity under the nonstandard propagation conditions frequently encountered in low altitude maritime radar applications. The vertical structure of ...This paper addresses the problem of estimating lower atmospheric refractivity under the nonstandard propagation conditions frequently encountered in low altitude maritime radar applications. The vertical structure of the refractive environment is modeled by using a five-parameter model, and the horizontal structure is modeled as range-independent. The electromagnetic propagation in the troposphere is simulated by using a split-step fast Fourier transform based on parabolic approximation to the wave equation. A global search marked as a modified genetic algorithm (MGA) for the 5 environmental parameters is performed by using a genetic algorithm (GA) integrated with a simulated annealing technique. The retrieved results from simulated runs demonstrate the ability of this method to make atmospheric refractivity estimations. A comparison with the classical GA and the Bayesian Markov Chain Monte Carlo (Bayesian- MCMC) technique shows that the MGA can not only shorten the inverse time but also improve the inverse precision. For real data cases, the inversion values do not match the reference data very well. The inverted profile, however, can be used to synoptically describe the real refractive structure.展开更多
We study the initial value problem of the Helmholtz equation with spatially variable wave number. We show that it can be stabilized by suppressing the evanescent waves. The stabilized Helmholtz equation can be solved ...We study the initial value problem of the Helmholtz equation with spatially variable wave number. We show that it can be stabilized by suppressing the evanescent waves. The stabilized Helmholtz equation can be solved numerically by a marching scheme combined with FFT. The resulting algorithm has complexity n^2 log n on a n x n grid. We demonstrate the efficacy of the method by numerical examples with caustics. For the Maxwell equation the same treatment is possible after reducing it to a second order system. We show how the method can be used for inverse problems arising in acoustic tomography and microwave imaging.展开更多
基金This project is supported by the Notional Natural Science Foundation of China
文摘In this paper,we study the existence and regularity of travelling wave front solutions for some degenerate parabolic equations (u^m/m)t=u_(xx)+u^nf(u),where m,n>0 and f(u)~1-u.We show that the existence and regularity of travelling wave front solutions depend on the parameters m,n and the wave speed c.
基金Project supported by the National Natural Science Foundation of China(Grant No 40775025)
文摘This paper addresses the problem of estimating lower atmospheric refractivity under the nonstandard propagation conditions frequently encountered in low altitude maritime radar applications. The vertical structure of the refractive environment is modeled by using a five-parameter model, and the horizontal structure is modeled as range-independent. The electromagnetic propagation in the troposphere is simulated by using a split-step fast Fourier transform based on parabolic approximation to the wave equation. A global search marked as a modified genetic algorithm (MGA) for the 5 environmental parameters is performed by using a genetic algorithm (GA) integrated with a simulated annealing technique. The retrieved results from simulated runs demonstrate the ability of this method to make atmospheric refractivity estimations. A comparison with the classical GA and the Bayesian Markov Chain Monte Carlo (Bayesian- MCMC) technique shows that the MGA can not only shorten the inverse time but also improve the inverse precision. For real data cases, the inversion values do not match the reference data very well. The inverted profile, however, can be used to synoptically describe the real refractive structure.
文摘We study the initial value problem of the Helmholtz equation with spatially variable wave number. We show that it can be stabilized by suppressing the evanescent waves. The stabilized Helmholtz equation can be solved numerically by a marching scheme combined with FFT. The resulting algorithm has complexity n^2 log n on a n x n grid. We demonstrate the efficacy of the method by numerical examples with caustics. For the Maxwell equation the same treatment is possible after reducing it to a second order system. We show how the method can be used for inverse problems arising in acoustic tomography and microwave imaging.