Two microcapsules with different paraffin phase changes were prepared using styrene-divinylbenzene copolymer and melamine resin as the capsule wall and paraffin(with a melting point of 50°C)as the capsule core.Th...Two microcapsules with different paraffin phase changes were prepared using styrene-divinylbenzene copolymer and melamine resin as the capsule wall and paraffin(with a melting point of 50°C)as the capsule core.The microcapsules were directly added to the hydroxyl terminated polybutadiene(HTPB)-polyurethane elastomer system to fabricate the polyurethane elastomer composites.The thermodynamic stability and mechanical properties of the material were then studied.The results show that the thermal stability of the polyurethane elastomer does not decrease after adding paraffin phase change microcapsules,and the thermal stability of the polyurethane elastomer with melamine resin as the wall increases.Tensile strength increased from 367 kPa to 797 kPa,and compression strength increased from 245.9 N to 344.7 N.In addition,capsule walls comprised different monomers/paraffin microcapsules of the copolymer of styrene and divinylbenzene.The optimal mechanical property was obtained at a monomer/paraffin ratio of 1:1.The compression strength increased and the tensile strength decreased.The tensile strength of the microcapsule with melamine resin capsule wall and the compression strength of the microcapsule with polystyrene capsule wall were considerably improved.展开更多
A copper coating was deposited by electroless plating on the surfaces of urea-formaldehyde microcap- sules containing paraffin (UFP) particles. This composite microcapsule structure had low infrared OR) emissivity ...A copper coating was deposited by electroless plating on the surfaces of urea-formaldehyde microcap- sules containing paraffin (UFP) particles. This composite microcapsule structure had low infrared OR) emissivity and maintained a constant temperature, and could be used in IR stealth applications. The eiectroless copper layer formation and its micro-appearance, and the effect of the copper layer on the IR emissivity and thermal properties of the composite microcapsules were investigated. The IR emissivity of the composite microcapsules at wavelengths of 1-14 μm gradually decreased with increasing copper mass on the surface. After formation of an integrated copper layer, the rate of IR emissivity decrease was lower. This is because the copper coating improves the surface conductivity of the UFP; a high conductivity results in high reflectivity, which leads to a decrease in IR emissivity. The lowest IR emissivity achieved was 0.68. The phase-change enthalpy of the composite microcapsules decreased with increasing amount of copper coated on the surface because of the high density of copper. When the mass increase of the UFP after electroless copper plating was about 300%, the composite microcapsules had low IR emissivity (about 0.8) and a high phase-change enthalpy (80J/g).展开更多
基金The work is financially supported by the National Natural Science Foundation of China(No.:b030301,a020601)the Foundation project for basic discipline research of Inner Mongolia Agricultural University(jc2017005)the research start project for high level talent of Inner Mongolia Agricultural University(ndgcc2016-17).
文摘Two microcapsules with different paraffin phase changes were prepared using styrene-divinylbenzene copolymer and melamine resin as the capsule wall and paraffin(with a melting point of 50°C)as the capsule core.The microcapsules were directly added to the hydroxyl terminated polybutadiene(HTPB)-polyurethane elastomer system to fabricate the polyurethane elastomer composites.The thermodynamic stability and mechanical properties of the material were then studied.The results show that the thermal stability of the polyurethane elastomer does not decrease after adding paraffin phase change microcapsules,and the thermal stability of the polyurethane elastomer with melamine resin as the wall increases.Tensile strength increased from 367 kPa to 797 kPa,and compression strength increased from 245.9 N to 344.7 N.In addition,capsule walls comprised different monomers/paraffin microcapsules of the copolymer of styrene and divinylbenzene.The optimal mechanical property was obtained at a monomer/paraffin ratio of 1:1.The compression strength increased and the tensile strength decreased.The tensile strength of the microcapsule with melamine resin capsule wall and the compression strength of the microcapsule with polystyrene capsule wall were considerably improved.
文摘A copper coating was deposited by electroless plating on the surfaces of urea-formaldehyde microcap- sules containing paraffin (UFP) particles. This composite microcapsule structure had low infrared OR) emissivity and maintained a constant temperature, and could be used in IR stealth applications. The eiectroless copper layer formation and its micro-appearance, and the effect of the copper layer on the IR emissivity and thermal properties of the composite microcapsules were investigated. The IR emissivity of the composite microcapsules at wavelengths of 1-14 μm gradually decreased with increasing copper mass on the surface. After formation of an integrated copper layer, the rate of IR emissivity decrease was lower. This is because the copper coating improves the surface conductivity of the UFP; a high conductivity results in high reflectivity, which leads to a decrease in IR emissivity. The lowest IR emissivity achieved was 0.68. The phase-change enthalpy of the composite microcapsules decreased with increasing amount of copper coated on the surface because of the high density of copper. When the mass increase of the UFP after electroless copper plating was about 300%, the composite microcapsules had low IR emissivity (about 0.8) and a high phase-change enthalpy (80J/g).