Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is mu...Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.展开更多
[Objective]Preservation and waterproof treatment are two crucial parts in wood protection, which can not only extend the service time, but also expand the application range of wood products. [Method] This work combine...[Objective]Preservation and waterproof treatment are two crucial parts in wood protection, which can not only extend the service time, but also expand the application range of wood products. [Method] This work combined CA with paraffin wax emulsion to treat wood samples, and basic properties of the compound system, such as stability (storage stability and centrifugal stability), particle size and pH val-ue, and water repel ency (water absorption, shrinkage and swel ing) of treated sam-ples were investigated. [Result and Conclusion] 1) the compound systems of CA and paraffin latex had a favorable miscibility and stability; 2) compared with untreated wood, CA-treated samples showed poor water repel ing properties, whereas samples treated with the compound systems indicated an obvious reduction in water absorp-tion, and the shrinkage and swel ing of them were improved as wel .展开更多
The extraction behavior of La^3+, Sm^3+, Dy^3+, and Yb^3+ insodium acetate-acetic acid medium was studied with tri-N-butylphosphate (TBP) at 60 deg. C using paraffin wax as a diluent. Theextraction percentage is great...The extraction behavior of La^3+, Sm^3+, Dy^3+, and Yb^3+ insodium acetate-acetic acid medium was studied with tri-N-butylphosphate (TBP) at 60 deg. C using paraffin wax as a diluent. Theextraction percentage is greater than 85/100 in the pH range of 6 to8. The result of slope analysis method indicates that thecompositions of the extracted species are different between the lightand heavy rare ear this. The formula of the extracted species isfound to be La (TBP) (OH) (Ac)_2 for La^3+ and Yb (TBP) (OH)_3 forYb^3+. The effects of extracting time, the concentration of TBP inthe organic phase and salts on the extraction efficiency were alsodiscussed.展开更多
Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of P...Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of PCM concrete with eight different Paraffin wax contents were tested by the cube compression test and four-point bending test.The more Paraffin wax incorporated,the greater loss of the compressive strength and bending strength.Based on the mechanical results,four contents of Paraffin wax were chosen for studying PCM concrete's thermal properties,including thermal conductivity,thermal diffusivity,specific heat capacity,thermal expansion coefficient and adiabatic temperature rise.When the Paraffin wax content increases from 10%to 20%,the thermal conductivity and the thermal diffusivity decrease from 7.31 kJ/(m·h·°C)to 7.10 kJ/(m·h·°C)and from 3.03×10−3 m2/h to 2.44×10−3 m2/h,respectively.Meanwhile the specific heat capacity and thermal expansion coefficient rise from 5.38×10−1 kJ/(kg·°C)to 5.76×10−1 kJ/(kg·°C)and from 9.63×10−6/°C to 14.02×10−6/°C,respectively.The adiabatic temperature rise is found to decrease with an increasing Paraffin wax content.Considering both the mechanical and thermal properties,15%of Paraffin wax was elected for the mass concrete model test,and the model test results confirm the effect of Paraffin wax in automatic mass concrete temperature control.展开更多
The paraffin wax microemulsion was prepared from fully refined paraffin wax No.58-60 in the presence of a nonionic surfactant and an anionic surfactant.The influence of manufacturing parameters on the particle diamete...The paraffin wax microemulsion was prepared from fully refined paraffin wax No.58-60 in the presence of a nonionic surfactant and an anionic surfactant.The influence of manufacturing parameters on the particle diameter of paraffin wax microemulsion included the quantity of the emulsifier,the temperature and emulsification time,the stirring speed,the pH value and the auxiliary ingredient(cosurfactant).The test results showed that the temperature of emulsification had little effect on the particle size of paraffin wax microemulsion in a temperature range of 75-85 ℃.Other manufacturing parameters all had a great effect on the particle size of paraffin wax microemulsion.The optimum preparation conditions included:a w(emulsifier) of 6%,an emulsification temperature of 80 ℃,an emulsification time of 40 min,a pH value of about 8,and a stirring speed of 600 r/min,with n-amyl alcohol serving as the co-surfactant.Under these conditions,a translucent and baby blue paraffin wax emulsion was prepared with its particle size equating to 97 nm.展开更多
In process of crude oil production and transportation, wax and other solid deposition issues have a significant impact on oilfield production. Solid precipitation not only reduces the production efficiency and increas...In process of crude oil production and transportation, wax and other solid deposition issues have a significant impact on oilfield production. Solid precipitation not only reduces the production efficiency and increases the cost of production. Therefore, there is a need to study the rate of paraffin wax deposition and cloud point temperature in order to guide the oil field control the paraffin wax deposition. In this paper, we use the Flory theory of polymer solution to correct the liquid activity coefficients, and regular solution theory to correct for the non ideality of the solid mixture, and we consider the impact of isoparaffin. Finally, thermodynamic model is established. The actual example calculation shows that the forecast results of this model are more accurate.展开更多
The suspension-like polymerization method is used to obtain poly methyl methacrylate (PMMA)/paraffin wax microcapsules and micro/nanocapsules with high core content. Particle size distribution (PSD) analysis indic...The suspension-like polymerization method is used to obtain poly methyl methacrylate (PMMA)/paraffin wax microcapsules and micro/nanocapsules with high core content. Particle size distribution (PSD) analysis indicates that the average particle size of microcapsules is 94 μm, and the size of micro/nanocapsules ranges in 0.1-19 μm. Differential scanning calorimetry (DSC) and thermalgravimetric analysis (TGA) results show that the fabricated paraffin contents in microcapsules and micro/nanocapsules are as high as 89.5 wt% and 80~2 wt%, respectively with good thermal stability. Thermal cycling tests justify that both the microcapsules and micro/nanocapsules have good thermal reliability with respect to the changes in their thermal properties after 1000 thermal cycling. This work pro- vides a novel method to prepare microcapsules and micro/nanocapsules with high core content which may benefit further study on thermal energy storage.展开更多
The paraffin wax was used as an organic solvent for 1 phenyl 3 methyl 4 benzoyl 5 pyrazolone (PMBP) and trioctylphousphine oxide (TOPO) in the extraction of rare earth ions (La 3+ , Pr 3+ , Eu 3+ , ...The paraffin wax was used as an organic solvent for 1 phenyl 3 methyl 4 benzoyl 5 pyrazolone (PMBP) and trioctylphousphine oxide (TOPO) in the extraction of rare earth ions (La 3+ , Pr 3+ , Eu 3+ , Yb 3+ and Ho 3+ ) at 70℃. The composition of the extracted specices were given as RE(PMBP) 3(TOPO) 2 by means of slope analysis. The variation of the synergistic extraction equilibrium constant ( K sex ) was studied at 55℃~70℃. The thermodynamic data obtained showed that the synergistic extraction of rare earth ions by PMBP and TOPO in molten paraffin wax is exothermic and the extracted complexes were formed by TOPO bonding to the outer sphere hydration.展开更多
In situ mRNA hybridization(ISH)is a powerful tool for examining the spatiotemporal expression of genes in shoot apical meristems and flower buds of cucumber.The most common ISH protocol uses paraffin wax;however,embed...In situ mRNA hybridization(ISH)is a powerful tool for examining the spatiotemporal expression of genes in shoot apical meristems and flower buds of cucumber.The most common ISH protocol uses paraffin wax;however,embedding tissue in paraffin wax can take a long time and might result in RNA degradation and decreased signals.Here,we developed an optimized protocol to simplify the process and improve RNA sensitivity.We combined embedding tissue in low melting-point Steedman’s wax with processing tissue sections in solution,as in the whole-mount ISH method in the optimized protocol.Using the optimized protocol,we examined the expression patterns of the CLAVATA3(CLV3)and WUSCHEL(WUS)genes in shoot apical meristems and floral meristems of Cucumis sativus(cucumber)and Arabidopsis thaliana(Arabidopsis).The optimized protocol saved 4–5 days of experimental period compared with the standard ISH protocol using paraffin wax.Moreover,the optimized protocol achieved high signal sensitivity.The optimized protocol was successful for both cucumber and Arabidopsis,which indicates it might have general applicability to most plants.展开更多
The hybrid propulsion performed with paraffin waxes exhibits most attractive capabilities compared to solid or liquid engines,e.g.,throttleability and re-ignition,alongside higher regression rates compared to the conv...The hybrid propulsion performed with paraffin waxes exhibits most attractive capabilities compared to solid or liquid engines,e.g.,throttleability and re-ignition,alongside higher regression rates compared to the conventional hydroxyl terminated polybutadiene(HTPB)hybrid fuel.This is because the paraffin wax forms a thin and hydro-dynamically unstable liquid layer,and then enhances the regression rate with the entrainment of droplets from the liquid-gas interface.Nevertheless,some critical open points on the manufacturing of the paraffin fuel grains still persist,because the paraffin wax exhibits high shrinkage during the solidification phase,leading to the formation of cavities,cracks and internal rips,which may be detrimental to the mechanical properties and the structural integrity of the fuel grain.In this context,this paper deals with a wide calorimetric,thermo-mechanical and physical characterization of the paraffin wax selected to manufacture the hybrid rocket engines(HRE)fuel grain,in order to gain a thorough knowledge of the material necessary to avoid the formation of critical defects.Several manufacturing methods were investigated,and it was found that only laboratory scale processes,based on the use of a heated circular mould-piston apparatus,are able to avoid the formation of critical defects,with the application of both high temperature and pressure.展开更多
Wax deposition in pipelines leads to pressure drop,reduced effective cross-sectional area,and blockages.Although mathematical models and experimental loops were used to model wax precipitation on pipeline surfaces,its...Wax deposition in pipelines leads to pressure drop,reduced effective cross-sectional area,and blockages.Although mathematical models and experimental loops were used to model wax precipitation on pipeline surfaces,its prediction at molecular levels is not fully recognized.Molecular dynamics is another powerful approach that can predict wax precipitation at the molecular level.This paper uses molecular dynamics simulations with the adsorption locator model found in Material Studio Software to investigate the adsorption behaviors of Icosane-C20H42,Docosane-C22H46,and Tetracosane-C24H50 paraffin waxes on the Fe,FeO,and Fe2O3 pipeline internal surfaces.Modeling is performed by varying temperature values and validated with experimental data.It was found that as the temperature altered,the adsorption energies,probability energy distribution and adsorption density field on the surfaces also changed;on the other hand,the energetic analysis results showed adsorption energies increase with carbon numbers increase due to its larger surface contacting areas and lower aspect ratio,which resulted in stronger interaction with the surfaces.Further,paraffin waxes showed to adsorb easily on Fe surfaces than oxide surfaces.At temperatures below Wax Appearance Temperature(WAT)on both simulations and experiments showed wax deposition.The lower adsorption energy capacity observed on the Fe2O3 pipeline surface confirms it's vitality and suitability for crude oil transportation pipelines surface lining material.展开更多
Pollution of petroleum hydrocarbons, in particular oil spills, has attracted much attention in the past and recent decades. Oil spills influence natural microbial community, and physical and chemical properties of the...Pollution of petroleum hydrocarbons, in particular oil spills, has attracted much attention in the past and recent decades. Oil spills influence natural microbial community, and physical and chemical properties of the affected sites. The biodegradation of hydrocarbons by microorganisms is one of the primary ways by which oil spill is eliminated from contaminated sites. One such spill was that of the Russian tanker the Nakhodka that spilled heavy oil into the Sea of Japan on January 2, 1997. The impact of the Nakhodka oil spill resulted in a viscous sticky fluid fouling the shores and affected natural ecosystems. This paper describes the weathering of hydrocarbon-degrading bacteria (genus Pseudomonas) and crystallized organic compounds from the Nakhodka oil spill-polluted seashores after nine years. The Nakhodka oil has hardened and formed crust of crystalline paraffin wax as shown by XRD analysis (0.422, 0.377, and 0.250 nm d-spacing) in association with graphite and calcite after 9 years of bioremediation. Anaerobic reverse side of the oil crust contained numerous coccus typed bacteria associated with halite. The finding of hydrocarbon-degrading bacteria and paraffin wax in the oil crust may have a significant effect on the weathering processes of the Nakhodka oil spill during the 9- year bioremediation.展开更多
基金supported by the National Natural Science Foundation of China, China (No. 51874047)the Key Science and Technology Project of Changsha City, China (No. kq2102005)+1 种基金the Special Fund for the Construction of Innovative Province in Hunan Province, China (No. 2020RC3038)the Changsha City Fund for Distinguished and Innovative Young Scholars, China (No. kq1802007)。
文摘Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.
基金Supported by Beijing Municipal Student Research Training Program in Beijing ForestryUniversity(S201310022020)Fundamental Research Funds for the Central Universities(TD2011-14)~~
文摘[Objective]Preservation and waterproof treatment are two crucial parts in wood protection, which can not only extend the service time, but also expand the application range of wood products. [Method] This work combined CA with paraffin wax emulsion to treat wood samples, and basic properties of the compound system, such as stability (storage stability and centrifugal stability), particle size and pH val-ue, and water repel ency (water absorption, shrinkage and swel ing) of treated sam-ples were investigated. [Result and Conclusion] 1) the compound systems of CA and paraffin latex had a favorable miscibility and stability; 2) compared with untreated wood, CA-treated samples showed poor water repel ing properties, whereas samples treated with the compound systems indicated an obvious reduction in water absorp-tion, and the shrinkage and swel ing of them were improved as wel .
基金the project KJCXGC-01 of Northwest Normal University China.
文摘The extraction behavior of La^3+, Sm^3+, Dy^3+, and Yb^3+ insodium acetate-acetic acid medium was studied with tri-N-butylphosphate (TBP) at 60 deg. C using paraffin wax as a diluent. Theextraction percentage is greater than 85/100 in the pH range of 6 to8. The result of slope analysis method indicates that thecompositions of the extracted species are different between the lightand heavy rare ear this. The formula of the extracted species isfound to be La (TBP) (OH) (Ac)_2 for La^3+ and Yb (TBP) (OH)_3 forYb^3+. The effects of extracting time, the concentration of TBP inthe organic phase and salts on the extraction efficiency were alsodiscussed.
基金This work is jointly supported by the National Natural Science Foundation of China(Grant Nos.51909223,51902270)the National Science Fund for Distinguished Young Scholars(Grant No.41825015)+2 种基金the Natural Science Basic Research Program of Shaanxi(Grant No.2019JQ-921)the Special research project of the Education Department of Shaanxi Provincial Government(Grant No.19JK0913)the Special Fund for the Launch of Scientific Research in Xijing University(Grant No.XJ18T02).
文摘Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of PCM concrete with eight different Paraffin wax contents were tested by the cube compression test and four-point bending test.The more Paraffin wax incorporated,the greater loss of the compressive strength and bending strength.Based on the mechanical results,four contents of Paraffin wax were chosen for studying PCM concrete's thermal properties,including thermal conductivity,thermal diffusivity,specific heat capacity,thermal expansion coefficient and adiabatic temperature rise.When the Paraffin wax content increases from 10%to 20%,the thermal conductivity and the thermal diffusivity decrease from 7.31 kJ/(m·h·°C)to 7.10 kJ/(m·h·°C)and from 3.03×10−3 m2/h to 2.44×10−3 m2/h,respectively.Meanwhile the specific heat capacity and thermal expansion coefficient rise from 5.38×10−1 kJ/(kg·°C)to 5.76×10−1 kJ/(kg·°C)and from 9.63×10−6/°C to 14.02×10−6/°C,respectively.The adiabatic temperature rise is found to decrease with an increasing Paraffin wax content.Considering both the mechanical and thermal properties,15%of Paraffin wax was elected for the mass concrete model test,and the model test results confirm the effect of Paraffin wax in automatic mass concrete temperature control.
基金supported by The National Natural Science Funds (Project No. 21076025)
文摘The paraffin wax microemulsion was prepared from fully refined paraffin wax No.58-60 in the presence of a nonionic surfactant and an anionic surfactant.The influence of manufacturing parameters on the particle diameter of paraffin wax microemulsion included the quantity of the emulsifier,the temperature and emulsification time,the stirring speed,the pH value and the auxiliary ingredient(cosurfactant).The test results showed that the temperature of emulsification had little effect on the particle size of paraffin wax microemulsion in a temperature range of 75-85 ℃.Other manufacturing parameters all had a great effect on the particle size of paraffin wax microemulsion.The optimum preparation conditions included:a w(emulsifier) of 6%,an emulsification temperature of 80 ℃,an emulsification time of 40 min,a pH value of about 8,and a stirring speed of 600 r/min,with n-amyl alcohol serving as the co-surfactant.Under these conditions,a translucent and baby blue paraffin wax emulsion was prepared with its particle size equating to 97 nm.
文摘In process of crude oil production and transportation, wax and other solid deposition issues have a significant impact on oilfield production. Solid precipitation not only reduces the production efficiency and increases the cost of production. Therefore, there is a need to study the rate of paraffin wax deposition and cloud point temperature in order to guide the oil field control the paraffin wax deposition. In this paper, we use the Flory theory of polymer solution to correct the liquid activity coefficients, and regular solution theory to correct for the non ideality of the solid mixture, and we consider the impact of isoparaffin. Finally, thermodynamic model is established. The actual example calculation shows that the forecast results of this model are more accurate.
基金This work was supported by the National Natural Science Foundation of China (Nos. 20973022 and11472048).
文摘The suspension-like polymerization method is used to obtain poly methyl methacrylate (PMMA)/paraffin wax microcapsules and micro/nanocapsules with high core content. Particle size distribution (PSD) analysis indicates that the average particle size of microcapsules is 94 μm, and the size of micro/nanocapsules ranges in 0.1-19 μm. Differential scanning calorimetry (DSC) and thermalgravimetric analysis (TGA) results show that the fabricated paraffin contents in microcapsules and micro/nanocapsules are as high as 89.5 wt% and 80~2 wt%, respectively with good thermal stability. Thermal cycling tests justify that both the microcapsules and micro/nanocapsules have good thermal reliability with respect to the changes in their thermal properties after 1000 thermal cycling. This work pro- vides a novel method to prepare microcapsules and micro/nanocapsules with high core content which may benefit further study on thermal energy storage.
文摘The paraffin wax was used as an organic solvent for 1 phenyl 3 methyl 4 benzoyl 5 pyrazolone (PMBP) and trioctylphousphine oxide (TOPO) in the extraction of rare earth ions (La 3+ , Pr 3+ , Eu 3+ , Yb 3+ and Ho 3+ ) at 70℃. The composition of the extracted specices were given as RE(PMBP) 3(TOPO) 2 by means of slope analysis. The variation of the synergistic extraction equilibrium constant ( K sex ) was studied at 55℃~70℃. The thermodynamic data obtained showed that the synergistic extraction of rare earth ions by PMBP and TOPO in molten paraffin wax is exothermic and the extracted complexes were formed by TOPO bonding to the outer sphere hydration.
基金supported by the National Natural Science Foundation of China(32002036)。
文摘In situ mRNA hybridization(ISH)is a powerful tool for examining the spatiotemporal expression of genes in shoot apical meristems and flower buds of cucumber.The most common ISH protocol uses paraffin wax;however,embedding tissue in paraffin wax can take a long time and might result in RNA degradation and decreased signals.Here,we developed an optimized protocol to simplify the process and improve RNA sensitivity.We combined embedding tissue in low melting-point Steedman’s wax with processing tissue sections in solution,as in the whole-mount ISH method in the optimized protocol.Using the optimized protocol,we examined the expression patterns of the CLAVATA3(CLV3)and WUSCHEL(WUS)genes in shoot apical meristems and floral meristems of Cucumis sativus(cucumber)and Arabidopsis thaliana(Arabidopsis).The optimized protocol saved 4–5 days of experimental period compared with the standard ISH protocol using paraffin wax.Moreover,the optimized protocol achieved high signal sensitivity.The optimized protocol was successful for both cucumber and Arabidopsis,which indicates it might have general applicability to most plants.
文摘The hybrid propulsion performed with paraffin waxes exhibits most attractive capabilities compared to solid or liquid engines,e.g.,throttleability and re-ignition,alongside higher regression rates compared to the conventional hydroxyl terminated polybutadiene(HTPB)hybrid fuel.This is because the paraffin wax forms a thin and hydro-dynamically unstable liquid layer,and then enhances the regression rate with the entrainment of droplets from the liquid-gas interface.Nevertheless,some critical open points on the manufacturing of the paraffin fuel grains still persist,because the paraffin wax exhibits high shrinkage during the solidification phase,leading to the formation of cavities,cracks and internal rips,which may be detrimental to the mechanical properties and the structural integrity of the fuel grain.In this context,this paper deals with a wide calorimetric,thermo-mechanical and physical characterization of the paraffin wax selected to manufacture the hybrid rocket engines(HRE)fuel grain,in order to gain a thorough knowledge of the material necessary to avoid the formation of critical defects.Several manufacturing methods were investigated,and it was found that only laboratory scale processes,based on the use of a heated circular mould-piston apparatus,are able to avoid the formation of critical defects,with the application of both high temperature and pressure.
基金This study was funded by China National Natural Science Foundation[Grant number 51704319 and 51574274].
文摘Wax deposition in pipelines leads to pressure drop,reduced effective cross-sectional area,and blockages.Although mathematical models and experimental loops were used to model wax precipitation on pipeline surfaces,its prediction at molecular levels is not fully recognized.Molecular dynamics is another powerful approach that can predict wax precipitation at the molecular level.This paper uses molecular dynamics simulations with the adsorption locator model found in Material Studio Software to investigate the adsorption behaviors of Icosane-C20H42,Docosane-C22H46,and Tetracosane-C24H50 paraffin waxes on the Fe,FeO,and Fe2O3 pipeline internal surfaces.Modeling is performed by varying temperature values and validated with experimental data.It was found that as the temperature altered,the adsorption energies,probability energy distribution and adsorption density field on the surfaces also changed;on the other hand,the energetic analysis results showed adsorption energies increase with carbon numbers increase due to its larger surface contacting areas and lower aspect ratio,which resulted in stronger interaction with the surfaces.Further,paraffin waxes showed to adsorb easily on Fe surfaces than oxide surfaces.At temperatures below Wax Appearance Temperature(WAT)on both simulations and experiments showed wax deposition.The lower adsorption energy capacity observed on the Fe2O3 pipeline surface confirms it's vitality and suitability for crude oil transportation pipelines surface lining material.
文摘Pollution of petroleum hydrocarbons, in particular oil spills, has attracted much attention in the past and recent decades. Oil spills influence natural microbial community, and physical and chemical properties of the affected sites. The biodegradation of hydrocarbons by microorganisms is one of the primary ways by which oil spill is eliminated from contaminated sites. One such spill was that of the Russian tanker the Nakhodka that spilled heavy oil into the Sea of Japan on January 2, 1997. The impact of the Nakhodka oil spill resulted in a viscous sticky fluid fouling the shores and affected natural ecosystems. This paper describes the weathering of hydrocarbon-degrading bacteria (genus Pseudomonas) and crystallized organic compounds from the Nakhodka oil spill-polluted seashores after nine years. The Nakhodka oil has hardened and formed crust of crystalline paraffin wax as shown by XRD analysis (0.422, 0.377, and 0.250 nm d-spacing) in association with graphite and calcite after 9 years of bioremediation. Anaerobic reverse side of the oil crust contained numerous coccus typed bacteria associated with halite. The finding of hydrocarbon-degrading bacteria and paraffin wax in the oil crust may have a significant effect on the weathering processes of the Nakhodka oil spill during the 9- year bioremediation.