期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Experimental Investigation of a Phase-ChangeMaterial’s Stabilizing Role in a Pilot of Smart Salt-Gradient Solar Ponds
1
作者 Karim Choubani Ons Ghriss +2 位作者 Nashmi H.Alrasheedi Sirin Dhaoui Abdallah Bouabidi 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期341-358,共18页
Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of us... Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond.Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials.This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with(SGSP)and without(SGSPP)paraffin wax(PW)as a phase-change material(PCM).Temperature and salinity were measured experimentally using a smart sensor,with the measurements being used to investigate the stabilizing effects of placing the PCM in the solar pond’s lower convective zone.The experimental results show that the pond with the PCM(SGSPP)achieved greater thermal and salinity stability,with there being a lesser temperature and salinity gradient between the different layers when compared to a solar pond without thePCM(SGSP).The use of the PCM,therefore,helped control the maximum and minimum temperature of the pond’s storage zone.The UCZ has been found to operate approximately 4 degrees above the average ambient temperature of the day in the SGSPP and 7 degrees in SGSP.Moreover,an unstable situation is generated after 5 days from starting the operation and at 1.9 m from the bottom,and certain points have the tendency to be neutral from the upper depths in 1,3 m of the bottom. 展开更多
关键词 Smart salt-gradient solar pond phase-change material experimental investigation stability of solar ponds
下载PDF
Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing 被引量:1
2
作者 Wen Zhou Xueyang Shen +2 位作者 Xiaolong Yang Jiangjing Wang Wei Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期2-27,共26页
In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.I... In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms. 展开更多
关键词 nanofabrication silicon photonics phase-change materials non-volatile photonic memory neuromorphic photonic computing
下载PDF
Universal memory based on phase-change materials:From phase-change random access memory to optoelectronic hybrid storage 被引量:2
3
作者 Bo Liu Tao Wei +5 位作者 Jing Hu Wanfei Li Yun Ling Qianqian Liu Miao Cheng Zhitang Song 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期128-149,共22页
The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,... The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,computing devices use the von Neumann architecture with separate computing and memory units,which exposes the shortcomings of“memory bottleneck”.Nonvolatile memristor can realize data storage and in-memory computing at the same time and promises to overcome this bottleneck.Phase-change random access memory(PCRAM)is called one of the best solutions for next generation non-volatile memory.Due to its high speed,good data retention,high density,low power consumption,PCRAM has the broad commercial prospects in the in-memory computing application.In this review,the research progress of phase-change materials and device structures for PCRAM,as well as the most critical performances for a universal memory,such as speed,capacity,and power consumption,are reviewed.By comparing the advantages and disadvantages of phase-change optical disk and PCRAM,a new concept of optoelectronic hybrid storage based on phase-change material is proposed.Furthermore,its feasibility to replace existing memory technologies as a universal memory is also discussed as well. 展开更多
关键词 universal memory optoelectronic hybrid storage phase-change material phase-change random access memory
下载PDF
Paraffin/SiC as a Novel Composite Phase-Change Material for a Lithium-Ion Battery Thermal Management System 被引量:2
4
作者 Wei Kang Yiqiang Zhao +3 位作者 Xueheng Jia Lin Hao Leping Dang Hongyuan Wei 《Transactions of Tianjin University》 EI CAS 2021年第1期55-63,共9页
A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silic... A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silicon was adopted to facilitate heat transfer. Moreover, high resistance or even insulation of CPCM is capable of preventing short circuits between the cells. The heat transfer mechanism of CPCMs was determined under a scanning electron microscope. A thermogravimetric analyzer was employed to determine the thermal stability. A diff erential scanning calorimeter was used to explore the thermophysical properties of the composite samples. By comparing the results of the experiment, it was reported that under the silicon carbide content of 5%, the parameters were better than others. The phase-change enthalpy of CPCM was 199.4 J/g, the leakage rate of liquid was 4.6%, and the melting point was 53.6℃. To verify the practicality of CPCM, a three-dimensional layered battery pack model was built in the COMSOL Multiphysics software. By simulating the thermal runaway inside the battery packs of various materials, it was reported that the addition of CPCM significantly narrowed the temperature range of the battery pack from 300–370 to 303–304 K. Therefore, CPCM can eff ectively increase the rate of heat transfer to prevent the chain of thermal runaway reactions. It also enables the battery pack to run at a stable temperature. 展开更多
关键词 Lithium-ion battery phase-change material PARAFFIN Silicon carbide Thermal runaway
下载PDF
Design of broadband achromatic metasurface device based on phase-change material Ge_(2)Sb_(2)Te_(5) 被引量:1
5
作者 Shuyuan Lv Xinhui Li +1 位作者 Wenfeng Luo Jie Jia 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期259-265,共7页
Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the a... Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the adjustment of the crystalline fraction m value of GST,the polarization insensitive achromic metalenses and beam deflector metasurface within the longer-infrared wavelength 9.5μm to 13μm are realized.The design results show that the achromatic metalenses can be focused on the same focal plane within the working waveband.The simulation calculation results show that the fullwidth at half-maximum(FWHM)of the focusing spot reaches the diffraction limit at each wavelength.In addition,the same method is also used to design a broadband achromatic beam deflector metasurface with the same deflection angle of 19°.The method proposed in this article not only provides new ideas for the design of achromatic metasurfaces,but also provides new possibilities for the integration of optical imaging,optical coding and other related optical systems. 展开更多
关键词 metasurface optical device phase-change material ACHROMATIC
下载PDF
An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing 被引量:1
6
作者 Qing Hu Boyi Dong +5 位作者 Lun Wang Enming Huang Hao Tong Yuhui He Ming Xu Xiangshui Miao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期49-54,共6页
Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continu... Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continuous synaptic depression.The relatively large power consumption and poor analog behavior of PCM devices greatly limit their applications.Here,we fabricate a GeTe/Sb2Te3 superlattice-like PCM device which allows a progressive RESET process.Our devices feature low-power consumption operation and potential high-density integration,which can effectively simulate biological synaptic characteristics.The programming energy can be further reduced by properly selecting the resistance range and operating method.The fabricated devices are implemented in both artificial neural networks(ANN)and convolutional neural network(CNN)simulations,demonstrating high accuracy in brain-like pattern recognition. 展开更多
关键词 superlattice-like phase-change material artificial synapse low-power consumption
下载PDF
Melting and Solidification Heat Transfer Characteristics of a Phase-Change Material in a Latent Heat Storage Vessel: Effects of a Perforated Partition Plate and Metal Fiber
7
作者 Than Tun Naing Akihiko Horibe +1 位作者 Naoto Haruki Yutaka Yamada 《Journal of Power and Energy Engineering》 2017年第8期13-29,共17页
Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste ... Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste heat (~100oC - 200oC) from factories. Direct contact melting and solidification behavior between a heat-transfer fluid (oil) and a latent heat storage material mixture were observed. The mixture consisted of mannitol and erythritol (Cm = 70 mass %, Ce = 30 mass %) as a phase-change material (PCM). The weight of the PCM was 3.0 kg and the flow rate of the oil, foil, was 1.0, 1.5, or 2.0 kg/min. To decrease the solidified height of the PCM mixture during the solidification process, a perforated partition plate was installed in the PCM region in the heat storage vessel. PCM coated oil droplets were broken by the perforated partition plate, preventing the solidified height of the PCM from increasing. The solidification and melting processes were repeated using metal fiber. It was found that installing the metal fiber was more effective than installing the perforated partition plate to prevent the flow out problem of the PCM. 展开更多
关键词 Heat Storage VESSEL SOLIDIFIED Height phase-change material (PCM) Mixture Perforated PARTITION PLATE Metal Fiber
下载PDF
Effect of Nanomaterials Addition to Phase Change Materials on Heat Transfer in Solar Panels under Iraqi Atmospheric Conditions
8
作者 Majid Ahmed Mohammed Abdullah Talab Derea +2 位作者 Mohammed Yaseen Lafta Obed Majeed Ali Omar Rafae Alomar 《Frontiers in Heat and Mass Transfer》 EI 2023年第1期215-226,共12页
It is common knowledge that phase-change materials are used for the purpose of thermal storage because of the characteristics that are exclusive to these materials and not found in others.These characteristics include... It is common knowledge that phase-change materials are used for the purpose of thermal storage because of the characteristics that are exclusive to these materials and not found in others.These characteristics include a large capacity for absorbing heat and a large capacity for releasing heat when the phase changes;however,these materials have a low thermal conductivity.This paper presents the results of an experimental study that investigated the impact that nanoparticles of copper oxide had on reducing the temperature of solar panels.The phase change substance that was used was determined to be beeswax.The impact of adding nanoscale copper oxide at a concentration of 0.05%of the total mass of wax was investigated and compared to a reference solar panel that did not contain any nanoscale additions.The findings demonstrated that the incorporation of nanoscale copper oxide brought about a reduction of three℃ in the plate’s average temperature as well as a one percent improvement in its electrical efficiency.In cases where it seems that the use of nanoparticles might potentially enhance the performance of integrated solar energy systems that contain phase change. 展开更多
关键词 Copper oxide nanoparticles NANOPARTICLE BEESWAX thermal conductivity phase-change materials
下载PDF
In situ characterization of vacancy ordering in Ge-Sb-Te phase-change memory alloys
9
作者 Ting-Ting Jiang Xu-Dong Wang +7 位作者 Jiang-Jing Wang Han-Yi Zhang Lu Lu Chunlin Jia Matthias Wuttig Riccardo Mazzarello Wei Zhang En Ma 《Fundamental Research》 CAS CSCD 2024年第5期1235-1242,共8页
Tailoring the degree of structural disorder in Ge-Sb-Te alloys is important for the development of non-volatile phase-change memory and neuro-inspired computing.Upon crystallization from the amorphous phase,these allo... Tailoring the degree of structural disorder in Ge-Sb-Te alloys is important for the development of non-volatile phase-change memory and neuro-inspired computing.Upon crystallization from the amorphous phase,these alloys form a cubic rocksalt-like structure with a high content of intrinsic vacancies.Further thermal annealing results in a gradual structural transition towards a layered structure and an insulator-to-metal transition.In this work,we elucidate the atomic-level details of the structural transition in crystalline GeSb_(2)Te_(4) by in situ high-resolution transmission electron microscopy experiments and ab initio density functional theory calculations,providing a comprehensive real-time and real-space view of the vacancy ordering process.We also discuss the impact of vacancy ordering on altering the electronic and optical properties of GeSb_(2)Te_(4),which is relevant to multilevel storage applications.The phase evolution paths in Ge-Sb-Te alloys and Sb_(2)Te_(3)are illustrated using a summary diagram,which serves as a guide for designing phase-change memory devices. 展开更多
关键词 phase-change materials Vacancy ordering Structural transition Metavalent bondingin situ TEM
原文传递
A self-regulated phototheranostic nanosystem with single wavelength-triggered energy switching and oxygen supply for multimodal synergistic therapy of bacterial biofilm infections
10
作者 Cheng Wang Shuyi Lv +6 位作者 Zhencheng Sun Minghui Xiao Hao Fu Liang Tian Xianhao Zhao Linqi Shi Chunlei Zhu 《Aggregate》 EI CAS 2024年第5期371-384,共14页
The exploration of antibiotic-independent phototherapy strategies for the treatment of bacterial biofilm infections has gained significant attention.However,efficient eradication of bacterial biofilms remains a challenge.... The exploration of antibiotic-independent phototherapy strategies for the treatment of bacterial biofilm infections has gained significant attention.However,efficient eradication of bacterial biofilms remains a challenge.Herein,a self-regulated pho-totheranostic nanosystem with single wavelength-triggered photothermal therapy(PTT)/photodynamic therapy(PDT)transformation and oxygen supply for multi-modal synergistic therapy of bacterial biofilm infections is presented.This approach combines a eutectic mixture of natural phase-change materials(PCMs)and an aggregation-induced emission(AIE)phototheranostic agent TPA-ICN to form col-loidally stable nanopartcicles(i.e.AIE@PCM NPs).The reversible solid-liquid phase transition of PCMs facilitates the adaptive regulation of the aggregation states of TPA-ICN,enabling a switch between the energy dissipation pathways for enhanced PDT in solid PCMs or enhanced PTT in liquid PCMs.Addition-ally,oxygen-carrying thermoresponsive nanoparticles are also introduced to alleviate the hypoxic microenvironment of biofilms by releasing oxygen upon heating by AIE@PCM NPs with enhanced PTT.The nanosystem exhibits outstanding therapeu-tic efficacy against bacterial biofilms both in vitro and in vivo,with an antibacterial efficiency of 99.99%.This study utilizes a self-regulated theranostic nanoplatform with adaptive PTT/PDT transformation via the phase transition of PCMs and heat-triggered oxygen release,holding great promise in the safe and efficient treatment of bacterial biofilm infections. 展开更多
关键词 bacterial biofilm infections hypoxic microenvironments multimodal synergistic therapy phase-change materials phototheranostic agents
原文传递
Experimental evaluation of factors affecting performance of concentrating photovoltaic/thermal system integrated with phase‐change materials(PV/T‐CPCM)
11
作者 Zhaoyang Luan Lanlan Zhang +2 位作者 Xiangfei Kong Han Li Man Fan 《Energy Storage and Saving》 2024年第1期30-41,共12页
The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly ... The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly applied to construct a concentrating photovoltaic/thermal system integrated with phase-change materials(PV/T-CPCM).An open-air environment is used to analyze the effects of different parameters and the intermittent operation strategy on the system performance.The results indicate that the short-circuit current and open-circuit voltage are positively correlated with the solar irradiance,but the open-circuit voltage is negatively correlated with the temperature of the PV modules.When the solar irradiance is 500 W⋅m^(−2) and the temperature of the PV modules is 27.5℃,the short-circuit current and open-circuit voltage are 1.0 A and 44.5 V,respectively.Higher solar irradiance results in higher thermal power,whereas the thermal efficiency is under lower solar irradiance(136.2-167.1 W⋅m^(−2) is twice under higher solar irradiance(272.3-455.7 W⋅m^(−2))).In addition,a higher mass flow rate corresponds to a better cooling effect and greater pump energy consumption.When the mass flow rate increases from 0.01 to 0.02 kg⋅s^(-1),the temperature difference between the inlet and outlet decreases by 1.8℃,and the primary energy-saving efficiency decreases by 0.53%.The intermittent operation of a water pump can reduce the energy consumption of the system,and the combination of liquid cooling with PCMs provides better thermal regulation and energy-saving effects under various conditions. 展开更多
关键词 Compound parabolic concentrator Factor analysis Open-air experiment phase-change materials Photovoltaic/thermal system
原文传递
Heat Transfer of Heat Sinking Vest with Phase-change Material 被引量:5
12
作者 QIU Yifen JIANG Nan +2 位作者 WU Wei ZHANG Guangwei XIAO Baoliang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第6期720-725,共6页
To investigate thermal protection effects of heat sinking vest with phase-change material (PCM), human thermoregulation model is introduced, and a thermal mathematical model of heat transfer with phase change has be... To investigate thermal protection effects of heat sinking vest with phase-change material (PCM), human thermoregulation model is introduced, and a thermal mathematical model of heat transfer with phase change has been developed with the enthalpy method. The uniform energy equation is constructed for the whole domain, and the equation is implicitly discreted by control volume and finite difference method. Then the enthalpy in each node is solved by using chasing method to calculate the tridiagonal equations, and the inner surface temperature of PCM could be obtained. According to the human thermoregulation model of heat sinking vest, the dynamic temperature distribution and sweat of the body are solved. Calculation results indicate that the change of core temperature matches the experimental result, and the sweat difference is small. This thermal mathematical model of heat transfer with phase change is credible and appropriate. Through comparing the dynamic temperature distribution and sweat of the body wearing heat sinking vest to results of the body not wearing this clothing, it is evident that wearing heat sinking vest can reduce the body heat load significantly. 展开更多
关键词 thermal protection heat sinking vest heat transfer phase-change material enthalpy method
原文传递
Study on the Heat Conduction of Phase-Change Material Microcapsules 被引量:3
13
作者 Gangtao Zhao Xiaohui Xu +2 位作者 Lin Qiu Xinghua Zheng Dawei Tang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第3期257-260,共4页
The 3ω approach was used to measure the effective thermal conductivity of phase-change material microcapsules (PCMMs) based on urea formaldehyde and sliced paraffin. The effective thermal conductivities of PCMMs with... The 3ω approach was used to measure the effective thermal conductivity of phase-change material microcapsules (PCMMs) based on urea formaldehyde and sliced paraffin. The effective thermal conductivities of PCMMs with different densities were measured within the phase-change temperature range. The relationships between effective thermal conductivity, density and temperature were analysed. The effective thermal conductivity reached peak values within the phase-change temperature range and the temperature peak value was consistent with the peak value of the phase-change temperature. The effective thermal conductivity increased with increasing density due to the decreased porosity of samples and their increased solid-phase conduction. 展开更多
关键词 3ω-method EFFECTIVE THERMAL conductivity phase-change material MICROCAPSULES
原文传递
Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials 被引量:6
14
作者 Ximin Tian Zhi-Yuan Li 《Photonics Research》 SCIE EI 2016年第4期146-152,共7页
We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge_2Sb_2Te_5(GST).The novel perfect... We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge_2Sb_2Te_5(GST).The novel perfect absorber scheme consists of an array of high-index strong-absorbance GST square resonators separated from a continuous Au substrate by a low-index lossless dielectric layer(silica)and a high-index GST planar cavity.Three absorption peaks with the maximal absorbance up to 99.94% are achieved,owing to the excitation of plasmon-like dipolar or quadrupole resonances from the high-index GST resonators and cavity resonances generated by the GST planar cavity.The intensities and positions of the absorption peaks show strong dependence on structural parameters.A heat transfer model is used to investigate the temporal variation of temperature within the GST region.The results show that the temperature of amorphous GST can reach up to 433 K of the phase transition temperature from room temperature in just 0.37 ns with a relatively low incident light intensity of 1.11×10~8W∕m^2,due to the enhanced ultra-broadband light absorbance through strong plasmon resonances and cavity resonance in the absorber.The study suggests a feasible means to lower the power requirements for photonic devices based on a thermal phase change via engineering ultra-broadband light absorbers. 展开更多
关键词 MMPA Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials GST
原文传递
Tunable near-infrared plasmonic perfect absorber based on phase-change materials 被引量:6
15
作者 Yiguo Chen Xiong Li +2 位作者 Xiangang Luo Stefan AMaier Minghui Hong 《Photonics Research》 SCIE EI 2015年第3期54-57,共4页
A tunable plasmonic perfect absorber with a tuning range of 650 nm is realized by introducing a 20 nm thick phase-change material Ge2Sb2Te5 layer into the metal–dielectric–metal configuration.The absorption at the p... A tunable plasmonic perfect absorber with a tuning range of 650 nm is realized by introducing a 20 nm thick phase-change material Ge2Sb2Te5 layer into the metal–dielectric–metal configuration.The absorption at the plasmonic resonance is kept above 0.96 across the whole tuning range.In this work we study this extraordinary optical response numerically and reveal the geometric conditions which support this phenomenon.This work shows a promising route to achieve tunable plasmonic devices for multi-band optical modulation,communication,and thermal imaging. 展开更多
关键词 GST Tunable near-infrared plasmonic perfect absorber based on phase-change materials
原文传递
Bioinspired solar anti-icing/de-icing surfaces based on phase-change materials 被引量:1
16
作者 Siyu Sheng Zhicheng Zhu +3 位作者 Zhanhui Wang Tongtong Hao Zhiyuan He Jianjun Wang 《Science China Materials》 SCIE EI CAS CSCD 2022年第5期1369-1376,共8页
Solar anti-icing/de-icing is an environmentally friendly way to convert light energy into heat with the purpose of melting/removing ice. However, the inherent intermittency of solar irradiation limits the application ... Solar anti-icing/de-icing is an environmentally friendly way to convert light energy into heat with the purpose of melting/removing ice. However, the inherent intermittency of solar irradiation limits the application of solar-thermal energy-conversion technologies, when continuous de-icing is required. Herein, we investigate a solar phase-change material(SPCM) that consists of expanded graphite(EG)/paraffin/polydimethylsiloxane(PDMS), which can not only perform the solar-thermal conversion but also release/store thermal energy. Under sunlight, the SPCM effectively collects and converts the light energy into thermal energy for later antiicing/de-icing. To prepare for a no-light period, e.g., in the evening, the converted thermal energy can be stored in the SPCM using a phase transition. In this way, the energy can be released when needed to keep the temperature of a surface from freezing. The SPCM surface shows excellent anti-icing/de-icing properties such as a long droplet freeze-delay time(td> 2 h), even at an ultra-low temperature(-40℃), using only the light of one sun. This freeze-delay time is much longer than that for a surface without PCM. The tested SPCM surfaces show a high de-icing rate(2.21 kg m^(-2)h^(-1)) under real-life conditions. In addition, the SPCM shows a high de-icing rate and excellent durability. This study provides a promising route for the utilization of solar energy in anti-icing/de-icing applications. 展开更多
关键词 BIOINSPIRED phase-change materials anti-icing/deicing solar energy MULTIFUNCTIONAL
原文传递
Investigation of phase-change materials for interior temperature regulation in public transport 被引量:1
17
作者 Md Nahidul Islam Md Nahid Hossain Dewan HasanAhmed 《Clean Energy》 EI 2022年第1期178-192,共15页
Regulating the indoor temperature of public transport on hot sunny days is a prime concern,as both the external and internal heat sources play an active role in heat gain.Experimental studies have been carried out on ... Regulating the indoor temperature of public transport on hot sunny days is a prime concern,as both the external and internal heat sources play an active role in heat gain.Experimental studies have been carried out on a bus model using sodium sulphate decahydrate as a phase-change material(PCM)that is placed in between the ceiling and the roof.Studies are conducted on a sunny day and also for different cases of external(300-W surface heater)and internal(25-W light bulb)heat sources.The results show that PCM,in the presence of an external heat source,can help to keep the indoor temperature lower and delay the time period for increasing the temperature by absorbing heat during the phase change.On the other hand,the presence of the internal heat source contributes to a detrimental effect on the indoor temperature,which gradually increases with the elapse of time.With the combination of the external and internal heat sources,it is found that the internal heat source plays a dominating factor to raise the indoor temperature.It is revealed from the experimental results that a 12.7-mm single layer and a single PCM are not enough to counter the internal heat of 25 W unless the thickness of the PCM layer is increased to delay the increase in the indoor temperature.An additional PCM layer with a lower melting temperature could be placed at the inner portion of the ceiling to have effective thermal-energy storage by absorbing the substantial heat gain from the internal heat sources. 展开更多
关键词 latent heat sodium sulphate decahydrate phase-change material TRANSPORTATION thermal-energy storage
原文传递
Electrically programmable phase-change photonic memory for optical neural networks with nanoseconds in situ training capability 被引量:7
18
作者 Maoliang Wei Junying Li +18 位作者 Zequn Chen Bo Tang Zhiqi Jia Peng Zhang Kunhao Lei Kai Xu Jianghong Wu Chuyu Zhong Hui Ma Yuting Ye Jialing Jian Chunlei Sun Ruonan Liu Ying Sun Wei.E.I.Sha Xiaoyong Hu Jianyi Yang Lan Li Hongtao Lin 《Advanced Photonics》 SCIE EI CAS CSCD 2023年第4期42-50,共9页
Optical neural networks (ONNs), enabling low latency and high parallel data processing withoutelectromagnetic interference, have become a viable player for fast and energy-efficient processing andcalculation to meet t... Optical neural networks (ONNs), enabling low latency and high parallel data processing withoutelectromagnetic interference, have become a viable player for fast and energy-efficient processing andcalculation to meet the increasing demand for hash rate. Photonic memories employing nonvolatile phase-change materials could achieve zero static power consumption, low thermal cross talk, large-scale, andhigh-energy-efficient photonic neural networks. Nevertheless, the switching speed and dynamic energyconsumption of phase-change material-based photonic memories make them inapplicable for in situ training.Here, by integrating a patch of phase change thin film with a PIN-diode-embedded microring resonator,a bifunctional photonic memory enabling both 5-bit storage and nanoseconds volatile modulation wasdemonstrated. For the first time, a concept is presented for electrically programmable phase-changematerial-driven photonic memory integrated with nanosecond modulation to allow fast in situ training and zerostatic power consumption data processing in ONNs. ONNs with an optical convolution kernel constructedby our photonic memory theoretically achieved an accuracy of predictions higher than 95% when testedby the MNIST handwritten digit database. This provides a feasible solution to constructing large-scalenonvolatile ONNs with high-speed in situ training capability. 展开更多
关键词 phase-change materials optical neural networks photonic memory silicon photonics reconfigurable photonics
原文传递
Phase-change composite filled natural nanotubes in hydrogel promote wound healing under photothermally triggered drug release 被引量:4
19
作者 Jing-Jing Ye Long-Fei Li +9 位作者 Rui-Nan Hao Min Gong Tong Wang Jian Song Qing-Han Meng Na-Na Zhao Fu-Jian Xu Yuri Lvov Li-Qun Zhang Jia-Jia Xue 《Bioactive Materials》 SCIE CSCD 2023年第3期284-298,共15页
It is of great importance to treat a bacterial-infected wound by a smart dressing capable of delivering antibiotics in a smart manner without causing drug resistance.The construction of smart release nanocontainers re... It is of great importance to treat a bacterial-infected wound by a smart dressing capable of delivering antibiotics in a smart manner without causing drug resistance.The construction of smart release nanocontainers responsive to near-infrared(NIR)laser irradiation in an on-demand and stepwise way is a promising strategy for avoiding the emergence of multidrug-resistant bacteria.Here,we develop a hydrogel composite made of alginate and nanotubes with an efficient NIR-triggered release of rifampicin and outstanding antibacterial ability.This composite hydrogel is prepared through co-encapsulating antibacterial drug(rifampicin),NIR-absorbing dye(indocyanine green),and phase-change materials(a eutectic mixture of fatty acids)into halloysite nanotubes,followed by incorporation into alginate hydrogels,allowing the in-situ gelation at room temperature and maintaining the integrity of drug-loaded nanotubes.Among them,the eutectic mixture with a melting point of 39℃ serves as the biocompatible phase-change material to facilitate the NIR-triggered drug release.The resultant phase-change material gated-nanotubes exhibit a prominent photothermal efficiency with multistep drug release under laser irradiation.In an in vitro assay,composite hydrogel provides good antibacterial potency against Staphylococcus aureus,one of the most prevalent microorganisms of dangerous gas gangrene.A bacterial-infected rat full-thickness wound model demonstrates that the NIR-responsive composite hydrogel inhibits the bacteria colonization and suppresses the inflammatory response caused by bacteria,promoting angiogenesis and collagen deposition to accelerate wound regeneration.The NIR-responsive composite hydrogel has a great po-tential as an antibacterial wound dressing functionalized with controlled multistep treatment of the infected sites. 展开更多
关键词 ANTI-BACTERIA Clay nanotubes Alginate hydrogel phase-change material NIR-Triggered drug release Infected wound healing
原文传递
Heat Absorbing and Releasing Experiments with Improved Phase-change Thermal Storage Canisters 被引量:4
20
作者 徐伟强 袁修干 邢玉明 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第3期306-311,共6页
This article,based on authors' long-term study,proposes an improved foamed-Ni-packed phase-change thermal storage canister,which takes advantage of the foamed-Ni characteristic of instinctive porous structure and exc... This article,based on authors' long-term study,proposes an improved foamed-Ni-packed phase-change thermal storage canister,which takes advantage of the foamed-Ni characteristic of instinctive porous structure and excellent properties to ameliorate its void distribution and thermal conductivity. The improved canister and the unimproved one without foamed-Ni package,are put to heat absorbing and releasing tests to investigate the effects of heat absorbing temperature upon the phase-change materials (PCM) melting time under three temperature schemes by using platinum resistance thermometers (PT100) and data acquisition modules (ADAM-4000) to gather the data of varying temperature. Afterwards,the computerized tomography (CT) is employed to scan the void distribution in both canisters. Compared to the unimproved canister,the experimental results evidence the superiority of the improved one in higher uniformity in void and temperature distribution as well as faster thermal responses. 展开更多
关键词 thermal storage EXPERIMENT phase-change materials foamed-Ni void distribution melting time
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部