为了解决传统的PMF-FFT(Partial Match Filter-Fast Fourier Transform)捕获算法在信号捕获方面的不足,提出了一种新的基于PMF-FFT的时频域双并行捕获方案。对PMF加改进的汉宁窗,通过调整窗系数,选择最优化的参数,减小了捕获系统输出增...为了解决传统的PMF-FFT(Partial Match Filter-Fast Fourier Transform)捕获算法在信号捕获方面的不足,提出了一种新的基于PMF-FFT的时频域双并行捕获方案。对PMF加改进的汉宁窗,通过调整窗系数,选择最优化的参数,减小了捕获系统输出增益的衰减。利用FFT频谱分析的特点,对FFT的输入进行合理补零,输出加改进的汉宁窗,调整窗系数,基本上消除了扇贝损失。理论分析和MATLAB仿真结果证明,该方案在尽量不增加系统复杂度的情况下提高了捕获速度和频率估计精度,能够适应多普勒频偏较大的扩频伪码快速捕获。展开更多
Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seism...Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seismic acquisition is accompanied by the lack of acquisition data,which requires high-precision regularization.The sparse signal feature in the transform domain in compressed sensing theory is used in this paper to recover the missing signal,involving sparse transform base optimization and threshold modeling.First,this paper analyzes and compares the effects of six sparse transformation bases on the reconstruction accuracy and efficiency of irregular seismic data and establishes the quantitative relationship between sparse transformation and reconstruction accuracy and efficiency.Second,an adaptive threshold modeling method based on sparse coefficient is provided to improve the reconstruction accuracy.Test results show that the method has good adaptability to different seismic data and sparse transform bases.The f-x domain reconstruction method of effective frequency samples is studied to address the problem of low computational efficiency.The parallel computing strategy of curvelet transform combined with OpenMP is further proposed,which substantially improves the computational efficiency under the premise of ensuring the reconstruction accuracy.Finally,the actual acquisition data are used to verify the proposed method.The results indicate that the proposed method strategy can solve the regularization problem of irregular seismic data in production and improve the imaging quality of the target layer economically and efficiently.展开更多
文摘为了解决传统的PMF-FFT(Partial Match Filter-Fast Fourier Transform)捕获算法在信号捕获方面的不足,提出了一种新的基于PMF-FFT的时频域双并行捕获方案。对PMF加改进的汉宁窗,通过调整窗系数,选择最优化的参数,减小了捕获系统输出增益的衰减。利用FFT频谱分析的特点,对FFT的输入进行合理补零,输出加改进的汉宁窗,调整窗系数,基本上消除了扇贝损失。理论分析和MATLAB仿真结果证明,该方案在尽量不增加系统复杂度的情况下提高了捕获速度和频率估计精度,能够适应多普勒频偏较大的扩频伪码快速捕获。
基金supported by the National Science and Technology Major project(No.2016ZX05024001003)the Innovation Consortium Project of China Petroleum,and the Southwest Petroleum University(No.2020CX010201).
文摘Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seismic acquisition is accompanied by the lack of acquisition data,which requires high-precision regularization.The sparse signal feature in the transform domain in compressed sensing theory is used in this paper to recover the missing signal,involving sparse transform base optimization and threshold modeling.First,this paper analyzes and compares the effects of six sparse transformation bases on the reconstruction accuracy and efficiency of irregular seismic data and establishes the quantitative relationship between sparse transformation and reconstruction accuracy and efficiency.Second,an adaptive threshold modeling method based on sparse coefficient is provided to improve the reconstruction accuracy.Test results show that the method has good adaptability to different seismic data and sparse transform bases.The f-x domain reconstruction method of effective frequency samples is studied to address the problem of low computational efficiency.The parallel computing strategy of curvelet transform combined with OpenMP is further proposed,which substantially improves the computational efficiency under the premise of ensuring the reconstruction accuracy.Finally,the actual acquisition data are used to verify the proposed method.The results indicate that the proposed method strategy can solve the regularization problem of irregular seismic data in production and improve the imaging quality of the target layer economically and efficiently.