Basetl on the finite element solution of the parametric varialional principle of elastic con/del problem, a corresponding parallel algorithm has been created bv utilizing the specialities of parallel computer and the ...Basetl on the finite element solution of the parametric varialional principle of elastic con/del problem, a corresponding parallel algorithm has been created bv utilizing the specialities of parallel computer and the architecture of concurrent processing in this paper. In this algorithm. the parallelisms have heen realized in the processes of creation and assembly of stiffness matrix, of the static condensation, of the solution of stresses and in many other aspects. The programme of this algorithm has been realized on ELXSI-6400 parallel computer of Xi'an Jiaotong University. The results of computation show that the computational time can be saved efficiently and it is an effective parallel algorithm for the analyses of contact problems.展开更多
Large deformation contact problems generally involve highly nonlinear behaviors,which are very time-consuming and may lead to convergence issues.The finite particle method(FPM)effectively separates pure deformation fr...Large deformation contact problems generally involve highly nonlinear behaviors,which are very time-consuming and may lead to convergence issues.The finite particle method(FPM)effectively separates pure deformation from total motion in large deformation problems.In addition,the decoupled procedures of the FPM make it suitable for parallel computing,which may provide an approach to solve time-consuming issues.In this study,a graphics processing unit(GPU)-based parallel algorithm is proposed for two-dimensional large deformation contact problems.The fundamentals of the FPM for planar solids are first briefly introduced,including the equations of motion of particles and the internal forces of quadrilateral elements.Subsequently,a linked-list data structure suitable for parallel processing is built,and parallel global and local search algorithms are presented for contact detection.The contact forces are then derived and directly exerted on particles.The proposed method is implemented with main solution procedures executed in parallel on a GPU.Two verification problems comprising large deformation frictional contacts are presented,and the accuracy of the proposed algorithm is validated.Furthermore,the algorithm’s performance is investigated via a large-scale contact problem,and the maximum speedups of total computational time and contact calculation reach 28.5 and 77.4,respectively,relative to commercial finite element software Abaqus/Explicit running on a single-core central processing unit(CPU).The contact calculation time percentage of the total calculation time is only 18%with the FPM,much smaller than that(50%)with Abaqus/Explicit,demonstrating the efficiency of the proposed method.展开更多
The parallel algorithms of iterated defect correction methods (PIDeCM’s) are constructed, which are of efficiency and high order B-convergence for general nonlinear stiff systems in ODE’S. As the basis of constructi...The parallel algorithms of iterated defect correction methods (PIDeCM’s) are constructed, which are of efficiency and high order B-convergence for general nonlinear stiff systems in ODE’S. As the basis of constructing and discussing PIDeCM’s. a class of parallel one-leg methods is also investigated, which are of particular efficiency for linear systems.展开更多
Given a simple graph G with n vertices, m edges and k connected components. The spanning forest problem is to find a spanning tree for each connected component of G. This problem has applications to the electrical pow...Given a simple graph G with n vertices, m edges and k connected components. The spanning forest problem is to find a spanning tree for each connected component of G. This problem has applications to the electrical power demand problem, computer network design, circuit analysis, etc. In this paper, we present an?time parallel algorithm with processors for constructing a spanning forest on proper circle graph G on EREW PRAM.展开更多
Given a simple graph G with n vertices and m edges, the spanning tree problem is to find a spanning tree for a given graph G. This problem has many applications, such as electric power systems, computer network design...Given a simple graph G with n vertices and m edges, the spanning tree problem is to find a spanning tree for a given graph G. This problem has many applications, such as electric power systems, computer network design and circuit analysis. For a simple graph, the spanning tree problem can be solved in O(log n) time with O(m+n) processors on the CRCW PRAM. In general, it is known that more efficient parallel algorithms can be developed by restricting classes of graphs. In this paper, we shall propose a parallel algorithm which runs O(log n) time with O(n/log n) processors on the EREW PRAM for constructing on proper circle trapezoid graphs.展开更多
With the rapid development of technology,processing the explosive growth of meteorological data on traditional standalone computing has become increasingly time-consuming,which cannot meet the demands of scientific re...With the rapid development of technology,processing the explosive growth of meteorological data on traditional standalone computing has become increasingly time-consuming,which cannot meet the demands of scientific research and business.Therefore,this paper proposes the implementation of the parallel Clustering Large Application based upon RANdomized Search(CLARANS)clustering algorithm on the Spark cloud computing platformto cluster China’s climate regions usingmeteorological data from1988 to 2018.The aim is to address the challenge of applying clustering algorithms to large datasets.In this paper,the morphological similarity distance is adopted as the similarity measurement standard instead of Euclidean distance,which improves clustering accuracy.Furthermore,the issue of local optima caused by an improper selection of initial clustering centers is addressed by utilizing the max-distance criterion.Compared to the k-means clustering algorithm already implemented in the Spark platform,the proposed algorithm has strong robustness,can reduce the interference of outliers in the dataset on clustering results,and has higher parallel performance than the frequently used serial algorithms,thus improving the efficiency of big data analysis.This experiment compares the clustered centroid data with the annual average meteorological data of representative cities in the five typical meteorological regions that exist in China,and the results show that the clustering results are in good agreement with the meteorological data obtained from the National Meteorological Science Data Center.This algorithm has a positive effect on the clustering analysis of massive meteorological data and deserves attention in scientific research activities.展开更多
In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting....In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.展开更多
The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The ...The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The effects of welding direction,clamping,fixture release time,fixed constraints,and welding sequences on these properties were analyzed,and the mapping relationship among welding characteristics was thoroughly examined.Different machine learning algorithms,including the generalized regression neural network(GRNN),wavelet neural network(WNN),and fuzzy neural network(FNN),are used to predict the multiple welding properties of thin-walled parts to mirror their variation trend and verify the correctness of the mapping relationship.Compared with those from GRNN and WNN,the maximum mean relative errors for the predicted values of deformation,temperature,and residual stress with FNN were less than 4.8%,1.4%,and 4.4%,respectively.These results indicate that FNN generated the best predicted welding characteristics.Analysis under various welding conditions also shows a mapping relationship among welding deformation,temperature,and residual stress over a period of time.This finding further provides a paramount basis for the control of welding assembly errors of an antenna structure in the future.展开更多
To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method a...To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method and genetic algorithm are introduced for the forward kinematic solution.Based onthe inverse and forward kinematic solutions,the end-effector s error calculation procedure is developed.To solve the accuracy problem caused by the length and angular parameters' different units,a normalizationmethod is proposed based on the manufacturing tolerance.Comparison between the error analysis resultscalculated by the traditional method and the numerical method for a 4RRR PKM shows that,this numericalerror analysis method is more accurate,simpler,and can evaluate the machine s real error basedon the manufacturing tolerance.展开更多
A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and...A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and scalability when handling large-scale industrial problems.Aiming at addressing this issue,this study proposes a momentum-incorporated parallel stochastic gradient descent(MPSGD)algorithm,whose main idea is two-fold:a)implementing parallelization via a novel datasplitting strategy,and b)accelerating convergence rate by integrating momentum effects into its training process.With it,an MPSGD-based latent factor(MLF)model is achieved,which is capable of performing efficient and high-quality recommendations.Experimental results on four high-dimensional and sparse matrices generated by industrial RS indicate that owing to an MPSGD algorithm,an MLF model outperforms the existing state-of-the-art ones in both computational efficiency and scalability.展开更多
Despite small workspace, parallel manipulators have some advantages over their serial counterparts in terms of higher speed, acceleration, rigidity, accuracy, manufacturing cost and payload. Accordingly, this type of ...Despite small workspace, parallel manipulators have some advantages over their serial counterparts in terms of higher speed, acceleration, rigidity, accuracy, manufacturing cost and payload. Accordingly, this type of manipulators can be used in many applications such as in high-speed machine tools, tuning machine for feeding, sensitive cutting, assembly and packaging. This paper presents a special type of planar parallel manipulator with three degrees of freedom. It is constructed as a variable geometry truss generally known planar Stewart platform. The reachable and orientation workspaces are obtained for this manipulator. The inverse kinematic analysis is solved for the trajectory tracking according to the redundancy and joint limit avoidance. Then, the dynamics model of the manipulator is established by using Virtual Work method. The simulations are performed to follow the given planar trajectories by using the dynamic equations of the variable geometry truss manipulator and computed force control method. In computed force control method, the feedback gain matrices for PD control are tuned with fixed matrices by trail end error and variable ones by means of optimization with genetic algorithm.展开更多
This work is aimed at investigating the online scheduling problem on two parallel and identical machines with a new feature that service requests from various customers are entitled to many different grade of service ...This work is aimed at investigating the online scheduling problem on two parallel and identical machines with a new feature that service requests from various customers are entitled to many different grade of service (GoS) levels, so each job and machine are labelled with the GoS levels, and each job can be processed by a particular machine only when its GoS level is no less than that of the machine. The goal is to minimize the makespan. For non-preemptive version, we propose an optimal online al-gorithm with competitive ratio 5/3. For preemptive version, we propose an optimal online algorithm with competitive ratio 3/2.展开更多
In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the...In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the stability region is given. The numerical example demonstrates that the method is efficient.展开更多
In this paper we consider an online scheduling of parallel jobs with preemption on identical machines, where jobs arrive over time. The objective is to minimize the makespan. For the problem that jobs have only two po...In this paper we consider an online scheduling of parallel jobs with preemption on identical machines, where jobs arrive over time. The objective is to minimize the makespan. For the problem that jobs have only two possible widths mj = 1 or m, we present an optimal online algorithm by using "temporary schedule".展开更多
基金Supported by the National Funds of National Structutal Vibration & Strength Laboratory of Xi'an Jiaotong University
文摘Basetl on the finite element solution of the parametric varialional principle of elastic con/del problem, a corresponding parallel algorithm has been created bv utilizing the specialities of parallel computer and the architecture of concurrent processing in this paper. In this algorithm. the parallelisms have heen realized in the processes of creation and assembly of stiffness matrix, of the static condensation, of the solution of stresses and in many other aspects. The programme of this algorithm has been realized on ELXSI-6400 parallel computer of Xi'an Jiaotong University. The results of computation show that the computational time can be saved efficiently and it is an effective parallel algorithm for the analyses of contact problems.
基金This work was supported by the National Key Research and Development Program of China[Grant No.2016YFC0800200]the National Natural Science Foundation of China[Grant Nos.51778568,51908492,and 52008366]+1 种基金Zhejiang Provincial Natural Science Foundation of China[Grant Nos.LQ21E080019 and LY21E080022]This work was also sup-ported by the Key Laboratory of Space Structures of Zhejiang Province(Zhejiang University)and the Center for Balance Architecture of Zhejiang University.
文摘Large deformation contact problems generally involve highly nonlinear behaviors,which are very time-consuming and may lead to convergence issues.The finite particle method(FPM)effectively separates pure deformation from total motion in large deformation problems.In addition,the decoupled procedures of the FPM make it suitable for parallel computing,which may provide an approach to solve time-consuming issues.In this study,a graphics processing unit(GPU)-based parallel algorithm is proposed for two-dimensional large deformation contact problems.The fundamentals of the FPM for planar solids are first briefly introduced,including the equations of motion of particles and the internal forces of quadrilateral elements.Subsequently,a linked-list data structure suitable for parallel processing is built,and parallel global and local search algorithms are presented for contact detection.The contact forces are then derived and directly exerted on particles.The proposed method is implemented with main solution procedures executed in parallel on a GPU.Two verification problems comprising large deformation frictional contacts are presented,and the accuracy of the proposed algorithm is validated.Furthermore,the algorithm’s performance is investigated via a large-scale contact problem,and the maximum speedups of total computational time and contact calculation reach 28.5 and 77.4,respectively,relative to commercial finite element software Abaqus/Explicit running on a single-core central processing unit(CPU).The contact calculation time percentage of the total calculation time is only 18%with the FPM,much smaller than that(50%)with Abaqus/Explicit,demonstrating the efficiency of the proposed method.
文摘The parallel algorithms of iterated defect correction methods (PIDeCM’s) are constructed, which are of efficiency and high order B-convergence for general nonlinear stiff systems in ODE’S. As the basis of constructing and discussing PIDeCM’s. a class of parallel one-leg methods is also investigated, which are of particular efficiency for linear systems.
文摘Given a simple graph G with n vertices, m edges and k connected components. The spanning forest problem is to find a spanning tree for each connected component of G. This problem has applications to the electrical power demand problem, computer network design, circuit analysis, etc. In this paper, we present an?time parallel algorithm with processors for constructing a spanning forest on proper circle graph G on EREW PRAM.
文摘Given a simple graph G with n vertices and m edges, the spanning tree problem is to find a spanning tree for a given graph G. This problem has many applications, such as electric power systems, computer network design and circuit analysis. For a simple graph, the spanning tree problem can be solved in O(log n) time with O(m+n) processors on the CRCW PRAM. In general, it is known that more efficient parallel algorithms can be developed by restricting classes of graphs. In this paper, we shall propose a parallel algorithm which runs O(log n) time with O(n/log n) processors on the EREW PRAM for constructing on proper circle trapezoid graphs.
基金supported by the National Natural Science Foundation of China(Grant No.62101275 and 62101274).
文摘With the rapid development of technology,processing the explosive growth of meteorological data on traditional standalone computing has become increasingly time-consuming,which cannot meet the demands of scientific research and business.Therefore,this paper proposes the implementation of the parallel Clustering Large Application based upon RANdomized Search(CLARANS)clustering algorithm on the Spark cloud computing platformto cluster China’s climate regions usingmeteorological data from1988 to 2018.The aim is to address the challenge of applying clustering algorithms to large datasets.In this paper,the morphological similarity distance is adopted as the similarity measurement standard instead of Euclidean distance,which improves clustering accuracy.Furthermore,the issue of local optima caused by an improper selection of initial clustering centers is addressed by utilizing the max-distance criterion.Compared to the k-means clustering algorithm already implemented in the Spark platform,the proposed algorithm has strong robustness,can reduce the interference of outliers in the dataset on clustering results,and has higher parallel performance than the frequently used serial algorithms,thus improving the efficiency of big data analysis.This experiment compares the clustered centroid data with the annual average meteorological data of representative cities in the five typical meteorological regions that exist in China,and the results show that the clustering results are in good agreement with the meteorological data obtained from the National Meteorological Science Data Center.This algorithm has a positive effect on the clustering analysis of massive meteorological data and deserves attention in scientific research activities.
文摘In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.
基金The Natural Science Foundation of Jiangsu Province,China(No.BK20200470)China Postdoctoral Science Foundation(No.2021M691595)Innovation and Entrepreneurship Plan Talent Program of Jiangsu Province(No.AD99002).
文摘The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The effects of welding direction,clamping,fixture release time,fixed constraints,and welding sequences on these properties were analyzed,and the mapping relationship among welding characteristics was thoroughly examined.Different machine learning algorithms,including the generalized regression neural network(GRNN),wavelet neural network(WNN),and fuzzy neural network(FNN),are used to predict the multiple welding properties of thin-walled parts to mirror their variation trend and verify the correctness of the mapping relationship.Compared with those from GRNN and WNN,the maximum mean relative errors for the predicted values of deformation,temperature,and residual stress with FNN were less than 4.8%,1.4%,and 4.4%,respectively.These results indicate that FNN generated the best predicted welding characteristics.Analysis under various welding conditions also shows a mapping relationship among welding deformation,temperature,and residual stress over a period of time.This finding further provides a paramount basis for the control of welding assembly errors of an antenna structure in the future.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2007AA041901 )the National Natural Science Foundation of China ( No. 50775117 )+1 种基金the National S&T Major Project ( No. 2009XZ04001-025 )the Technology Innovation Fund of AVIC ( No.2009E 13224 )
文摘To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method and genetic algorithm are introduced for the forward kinematic solution.Based onthe inverse and forward kinematic solutions,the end-effector s error calculation procedure is developed.To solve the accuracy problem caused by the length and angular parameters' different units,a normalizationmethod is proposed based on the manufacturing tolerance.Comparison between the error analysis resultscalculated by the traditional method and the numerical method for a 4RRR PKM shows that,this numericalerror analysis method is more accurate,simpler,and can evaluate the machine s real error basedon the manufacturing tolerance.
基金supported in part by the National Natural Science Foundation of China(61772493)the Deanship of Scientific Research(DSR)at King Abdulaziz University(RG-48-135-40)+1 种基金Guangdong Province Universities and College Pearl River Scholar Funded Scheme(2019)the Natural Science Foundation of Chongqing(cstc2019jcyjjqX0013)。
文摘A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and scalability when handling large-scale industrial problems.Aiming at addressing this issue,this study proposes a momentum-incorporated parallel stochastic gradient descent(MPSGD)algorithm,whose main idea is two-fold:a)implementing parallelization via a novel datasplitting strategy,and b)accelerating convergence rate by integrating momentum effects into its training process.With it,an MPSGD-based latent factor(MLF)model is achieved,which is capable of performing efficient and high-quality recommendations.Experimental results on four high-dimensional and sparse matrices generated by industrial RS indicate that owing to an MPSGD algorithm,an MLF model outperforms the existing state-of-the-art ones in both computational efficiency and scalability.
文摘Despite small workspace, parallel manipulators have some advantages over their serial counterparts in terms of higher speed, acceleration, rigidity, accuracy, manufacturing cost and payload. Accordingly, this type of manipulators can be used in many applications such as in high-speed machine tools, tuning machine for feeding, sensitive cutting, assembly and packaging. This paper presents a special type of planar parallel manipulator with three degrees of freedom. It is constructed as a variable geometry truss generally known planar Stewart platform. The reachable and orientation workspaces are obtained for this manipulator. The inverse kinematic analysis is solved for the trajectory tracking according to the redundancy and joint limit avoidance. Then, the dynamics model of the manipulator is established by using Virtual Work method. The simulations are performed to follow the given planar trajectories by using the dynamic equations of the variable geometry truss manipulator and computed force control method. In computed force control method, the feedback gain matrices for PD control are tuned with fixed matrices by trail end error and variable ones by means of optimization with genetic algorithm.
基金Project supported by the National Natural Science Foundation of China (No. 10271110) and the Teaching and Research Award Pro-gram for Outstanding Young Teachers in Higher Education, Institu-tions of MOE, China
文摘This work is aimed at investigating the online scheduling problem on two parallel and identical machines with a new feature that service requests from various customers are entitled to many different grade of service (GoS) levels, so each job and machine are labelled with the GoS levels, and each job can be processed by a particular machine only when its GoS level is no less than that of the machine. The goal is to minimize the makespan. For non-preemptive version, we propose an optimal online al-gorithm with competitive ratio 5/3. For preemptive version, we propose an optimal online algorithm with competitive ratio 3/2.
文摘In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the stability region is given. The numerical example demonstrates that the method is efficient.
基金Project supported by the National Natural Science Foundation of China (Grant No.10971131)the Shanghai Leading AcademicDiscipline Project (Grant No.S30104)the Innovation Foundation of Shanghai University (Grant No.SHUCX091077)
文摘In this paper we consider an online scheduling of parallel jobs with preemption on identical machines, where jobs arrive over time. The objective is to minimize the makespan. For the problem that jobs have only two possible widths mj = 1 or m, we present an optimal online algorithm by using "temporary schedule".