期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
融合CNN和ViT的声信号轴承故障诊断方法 被引量:5
1
作者 宁方立 王珂 郝明阳 《振动与冲击》 EI CSCD 北大核心 2024年第3期158-163,170,共7页
针对轴承故障诊断任务数据量少、故障信号非平稳等特点,提出一种短时傅里叶变换、卷积神经网络和视觉转换器相结合的轴承故障诊断方法。首先,利用短时傅里叶变换将原始声信号转换为包含时序信息和频率信息的时频图像。其次,将时频图像... 针对轴承故障诊断任务数据量少、故障信号非平稳等特点,提出一种短时傅里叶变换、卷积神经网络和视觉转换器相结合的轴承故障诊断方法。首先,利用短时傅里叶变换将原始声信号转换为包含时序信息和频率信息的时频图像。其次,将时频图像作为卷积神经网络的输入,用于隐式提取图像的深层特征,其输出作为视觉转换器的输入。视觉转换器用于提取信号的时间序列信息。并在输出层利用Softmax函数实现故障模式的识别。试验结果表明,该方法对于轴承故障诊断准确率较高。为了更好解释和优化提出的轴承故障诊断方法,利用t-分布领域嵌入算法对分类特征进行了可视化展示。 展开更多
关键词 短时傅里叶变换 卷积神经网络 视觉转换器 t-分布领域嵌入算法
下载PDF
基于累加式实时串并联变换算法的机械故障声学监测方法
2
作者 祝洲杰 杨金林 毛鹏峰 《机电工程》 CAS 北大核心 2024年第2期364-370,共7页
针对基于物联网(IoT)的冲压机床故障监测问题,为了降低冲压机床故障监测的计算复杂度,并提高其低频识别的精度,提出了一种无需机器学习技术的实时性机械故障声学监测方法,即基于累加式实时串并联变换算法的机械故障声学监测方法。首先,... 针对基于物联网(IoT)的冲压机床故障监测问题,为了降低冲压机床故障监测的计算复杂度,并提高其低频识别的精度,提出了一种无需机器学习技术的实时性机械故障声学监测方法,即基于累加式实时串并联变换算法的机械故障声学监测方法。首先,研究了物联网场景中冲压机床声学低频分析的必要性,并给出了声学信号的表达式;然后,针对频率轴上多个周期信号重叠导致参数估计较为困难的问题,提出了一种累加式实时串并联变换算法,将输入的采样序列馈入多个具有不同输出端口的串并转换器,从累加的波形中检测出最大绝对值,并进行了比较;最后,通过样本时隙划分,将累加式实时串并联变换算法应用于机械故障监测;通过仿真和冲压机床实机测试,对累加式实时串并联变换算法和实时性机械故障声学监测方法的有效性进行了验证。研究结果表明:在无需大量信号样本的情况下,使用累加式实时串并联变换算法有利于提高低频带的识别精度;在直方图相关性方面,累加式实时串并联变换算法和Morlet小波变换具有相同的性能,且均明显优于短时傅立叶变换;同时,尽管累加式实时串并联变换算法需要的加法总数比Morlet小波变换多2.5倍,但是乘法总数减少了20447%,大幅减少了计算的复杂度。 展开更多
关键词 机械故障监测 冲压机床 累加式实时串并联变换算法 串并转换器 低频识别精度 计算复杂度
下载PDF
冲击噪声下基于演化长短时记忆神经网络的调制信号识别 被引量:1
3
作者 高洪元 王世豪 +2 位作者 程建华 郭瑞晨 张志伟 《智能系统学报》 CSCD 北大核心 2023年第4期676-687,共12页
为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolut... 为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolution neural network,CNN)去噪模型对数据集去噪;结合量子计算机制和旗鱼优化器(sailfish optimizer,SFO)设计了量子旗鱼算法(quantum sailfish algorithm,QSFA)去演化LSTM神经网络以获得最优的超参数;使用演化长短时记忆神经网络作为分类器进行自动调制信号识别。仿真结果表明,采用所设计的CNN去噪和演化长短时记忆神经网络模型,识别准确率有了大幅度的提高。量子旗鱼算法演化LSTM神经网络模型降低了传统LSTM神经网络容易陷于局部极小值或者过拟合的概率,当混合信噪比为0 dB,所提方法对11种调制信号的平均识别准确率达到90%以上。 展开更多
关键词 调制信号识别 冲击噪声 卷积神经网络 量子旗鱼优化算法 长短时记忆神经网络 稳定分布 超参数 短时傅里叶变换
下载PDF
基于并行卷积神经网络和特征融合的小样本轴承故障诊断方法
4
作者 王俊年 王源 童鹏程 《机电工程》 CAS 北大核心 2023年第3期317-325,369,共10页
在风力发电机轴承故障诊断过程中,基于深度学习的故障诊断方法受限于有限的标注样本,存在模型收敛困难和识别准确率较低等问题,为此,提出了一种基于并行卷积神经网络(P-CNN)和特征融合的小样本风机轴承故障诊断方法。首先,采用集合经验... 在风力发电机轴承故障诊断过程中,基于深度学习的故障诊断方法受限于有限的标注样本,存在模型收敛困难和识别准确率较低等问题,为此,提出了一种基于并行卷积神经网络(P-CNN)和特征融合的小样本风机轴承故障诊断方法。首先,采用集合经验模态分解(EEMD)方法,将轴承的原始振动信号分解为若干个本征模态函数(IMF)分量以及残余分量;然后,分别对其进行了短时傅里叶变换(STFT),将其转换为时频特征图,同时构建了多个相同的卷积神经网络分支,以此作为特征提取器;最后,在融合层中,将提取到的时频域特征进行了通道特征融合,作为最终分类器的输入数据,对风机轴承进行了故障识别;并采用美国凯斯西储大学不同大小的轴承数据集,对该方法的适用性和有效性进行了验证。研究结果表明:在仅含有160个样本时,基于并行卷积神经网络(P-CNN)和特征融合的诊断方法的平均准确率高达94.5%;与支持向量机(SVM)、故障网络(FaultNet)、第一层宽卷积核深度卷积神经网络(WDCNN)相比,该诊断方法具有更高的准确率和更强的鲁棒性。 展开更多
关键词 深度学习 集合经验模态分解 短时傅里叶变换 并行卷积神经网络 特征提取 本征模态函数 故障诊断准确率和鲁棒性
下载PDF
卷积噪声环境下语音信号鲁棒特征提取 被引量:3
5
作者 吕钊 吴小培 +1 位作者 张超 李密 《声学学报》 EI CSCD 北大核心 2010年第4期465-470,共6页
提出了一种基于独立分量分析(ICA)的语音信号鲁棒特征提取算法,用以解决在卷积噪声环境下语音信号的训练与识别特征不匹配的问题。该算法通过短时傅里叶变换将带噪语音信号从时域转换到频域后,采用复值ICA方法从带噪语音的短时谱中分离... 提出了一种基于独立分量分析(ICA)的语音信号鲁棒特征提取算法,用以解决在卷积噪声环境下语音信号的训练与识别特征不匹配的问题。该算法通过短时傅里叶变换将带噪语音信号从时域转换到频域后,采用复值ICA方法从带噪语音的短时谱中分离出语音信号的短时谱,然后根据所得到的语音信号短时谱计算美尔倒谱系数(MFCC)及其一阶差分作为特征参数。在仿真与真实环境下汉语数字语音识别实验中,所提算法相比较传统的MFCC其识别正确率分别提升了34.8%和32.6%。实验结果表明基于ICA方法的语音特征在卷积噪声环境下具有良好的鲁棒性。 展开更多
关键词 特征提取算法 语音信号 噪声环境 鲁棒性 卷积 短时傅里叶变换 独立分量分析 美尔倒谱系数
下载PDF
基于循环平稳检测算法SSCA的FFT模块设计 被引量:2
6
作者 邓正宏 徐继伟 +1 位作者 周岩 乔洪海 《西北工业大学学报》 EI CAS CSCD 北大核心 2013年第5期706-709,共4页
通过对循环平稳检测算法的分析,对基于SSCA算法的FFT模块进行设计并验证时序。首先,对循环平稳检测算法进行了研究与仿真,比较了现存的几种循环平稳检测方法的复杂度。其次,选择SSCA算法,提出了一种流水线工作方式的定常构形FFT模块的... 通过对循环平稳检测算法的分析,对基于SSCA算法的FFT模块进行设计并验证时序。首先,对循环平稳检测算法进行了研究与仿真,比较了现存的几种循环平稳检测方法的复杂度。其次,选择SSCA算法,提出了一种流水线工作方式的定常构形FFT模块的设计方案。最后,在开发环境QuartusⅡ进行模块的构建,在仿真软件ModelSim环境下进行时序验证,从而实现了算法硬件化。 展开更多
关键词 循环平稳检测算法 SSCA FFT模块 算法硬件化
下载PDF
Vandermonde矩阵求逆的并行算法及其复杂度 被引量:1
7
作者 姚志强 叶建 《福建师范大学学报(自然科学版)》 CAS CSCD 1999年第4期22-27,共6页
分析Vanderm onde 矩阵的一种求逆递推式,利用卷积技术研究递推式求解的并行计算方法,给出了并行算法的实现方案,该算法的时间复杂度为O((log2n)2).
关键词 并行算法 时间复杂度 逆矩阵 范德蒙矩阵
下载PDF
基于多输入卷积神经网络的轴承故障诊断方法
8
作者 凌六一 吴起 黄凯文 《安徽理工大学学报(自然科学版)》 CAS 2022年第2期73-79,共7页
为了解决现有轴承故障诊断方法提取特征能力不足的问题,提出了一种基于多输入卷积神经网络的诊断方法。首先对原始的轴承一维振动信号分别通过短时傅里叶变换(STFT)和连续小波变换(CWT)转换为两种时频域图像信号;然后将两种时频图像输... 为了解决现有轴承故障诊断方法提取特征能力不足的问题,提出了一种基于多输入卷积神经网络的诊断方法。首先对原始的轴承一维振动信号分别通过短时傅里叶变换(STFT)和连续小波变换(CWT)转换为两种时频域图像信号;然后将两种时频图像输入到相应的具有不同卷积网络结构的特征提取层进行特征提取;最后将提取的故障特征图进行叠加后输入到分类层实现故障分类。采用t-分布随机邻域嵌入算法(t-SNE)对所提方法的特征提取效果进行了可视化分析。结果表明,与传统的轴承故障诊断方法相比,所提方法具有更强的故障特征提取能力且故障分类准确率达到了99.6%。 展开更多
关键词 故障诊断 卷积神经网络 短时傅里叶变换 连续小波变换 t-SNE
下载PDF
基于激光导引头信号的并行高速FFT算法设计 被引量:7
9
作者 朱立坤 贾方秀 李兴隆 《激光技术》 CAS CSCD 北大核心 2018年第1期89-93,共5页
为了减少激光半主动武器中测量光学器件光斑点坐标时噪声和干扰对探测精度影响、增加脉冲信号的测量带宽、提取信号的有效值,同时克服串行快速傅里叶变换(FFT)运算耗时及时间复杂度较大的问题,基于多核和并行架构的SoC-FPGA平台以及Ope... 为了减少激光半主动武器中测量光学器件光斑点坐标时噪声和干扰对探测精度影响、增加脉冲信号的测量带宽、提取信号的有效值,同时克服串行快速傅里叶变换(FFT)运算耗时及时间复杂度较大的问题,基于多核和并行架构的SoC-FPGA平台以及OpenCL软件,提出了实现并行FFT的计算方法。结果表明,利用该方法可使FFT(1-D)的时间复杂度下降到原来的1/Q,得到了较好的加速效果;通过3种平台(先进精简指令集微处理器、数字信号处理器和片上系统现场可编程门阵列)的运算耗时实验对比,该算法运算耗时为6.0449ms(1-D4096点),要比同点数其它两种平台运算耗时少。并行FFT算法不仅满足激光半主动导引头信号实时性的要求,而且可以达到去噪的效果,能有效地降低噪声和背景光的影响。 展开更多
关键词 测量与计量 并行快速傅里叶变换 SoC-FPGA OPENCL 时间复杂度 激光半主动
下载PDF
g-r循环矩阵求逆的快速算法和并行算法 被引量:1
10
作者 袁中扬 《咸阳师范学院学报》 2007年第6期1-3,共3页
借助于快速付立叶变换(FFT),给出了n阶g-r循环矩阵求逆的快速算法,该算法的计算复杂性为O(nlogn)+(g+1)n,且具有很好的并行性,若使用n台处理机并行处理该算法,则只需要O(nlogn)+(g+1)n步。
关键词 g-r循环矩阵 快速付立叶变换(FFT) 快速算法 并行算法 复杂性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部