期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DEVELOPMENT OF THE ENERGY MANAGEMENT STRATEGY FOR PARALLEL HYBRID ELECTRIC URBAN BUSES 被引量:7
1
作者 HUANG Yuanjun YIN Chengliang ZHANG Jianwu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期44-50,共7页
A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy ... A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy combining a logic threshold approach and an instantaneous optimization algorithm is proposed for the investigated PHEUB. The objective of the energy management strategy is to achieve acceptable vehicle performance and drivability requirements while simultaneously maximizing the engine fuel consumption and maintaining the battery state of charge in its operation range at all times. Under the environment of Matlab/Simulink, a computer simulation model for the PHEUB is constructed by using the model building method combining theoretical analysis and bench test data. Simulation and experiment results for China Typical Bus Driving Schedule at Urban District (CTBDS_UD) are obtained, and the results indicate that the proposed control strategy not only controls the hybrid system efficiently but also improves the fuel economy significantly. 展开更多
关键词 parallel hybrid electric urban bus (PHEUB) Energy management strategy (EMS) Instantaneous optimization
下载PDF
Implementable Strategy Research of Brake Energy Recovery Based on Dynamic Programming Algorithm for a Parallel Hydraulic Hybrid Bus 被引量:6
2
作者 Zhong-Liang Zhang Jie Chen 《International Journal of Automation and computing》 EI CSCD 2014年第3期249-255,共7页
The purpose of this paper is to develop an implementable strategy of brake energy recovery for a parallel hydraulic hybrid bus. Based on brake process analysis, a dynamic programming algorithm of brake energy recovery... The purpose of this paper is to develop an implementable strategy of brake energy recovery for a parallel hydraulic hybrid bus. Based on brake process analysis, a dynamic programming algorithm of brake energy recovery is established. And then an implementable strategy of brake energy recovery is proposed by the constraint variable trajectories analysis of the dynamic programming algorithm in the typical urban bus cycle. The simulation results indicate the brake energy recovery efficiency of the accumulator can reach 60% in the dynamic programming algorithm. And the hydraulic hybrid system can output braking torque as much as possible.Moreover, the accumulator has almost equal efficiency of brake energy recovery between the implementable strategy and the dynamic programming algorithm. Therefore, the implementable strategy is very effective in improving the efficiency of brake energy recovery.The road tests show the fuel economy of the hydraulic hybrid bus improves by 22.6% compared with the conventional bus. 展开更多
关键词 Implementable strategy brake energy recovery dynamic programming parallel hydraulic hybrid bus shifting schedule pump/motor displacement.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部