At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns st...At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns still need enhancement,particularly accuracy,sensitivity,false positive and false negative,to improve the brain tumor prediction system symmetrically.Therefore,this work proposed an Extended Deep Learning Algorithm(EDLA)to measure performance parameters such as accuracy,sensitivity,and false positive and false negative rates.In addition,these iterated measures were analyzed by comparing the EDLA method with the Convolutional Neural Network(CNN)way further using the SPSS tool,and respective graphical illustrations were shown.The results were that the mean performance measures for the proposed EDLA algorithm were calculated,and those measured were accuracy(97.665%),sensitivity(97.939%),false positive(3.012%),and false negative(3.182%)for ten iterations.Whereas in the case of the CNN,the algorithm means accuracy gained was 94.287%,mean sensitivity 95.612%,mean false positive 5.328%,and mean false negative 4.756%.These results show that the proposed EDLA method has outperformed existing algorithms,including CNN,and ensures symmetrically improved parameters.Thus EDLA algorithm introduces novelty concerning its performance and particular activation function.This proposed method will be utilized effectively in brain tumor detection in a precise and accurate manner.This algorithm would apply to brain tumor diagnosis and be involved in various medical diagnoses aftermodification.If the quantity of dataset records is enormous,then themethod’s computation power has to be updated.展开更多
Image based individual dairy cattle recognition has gained much attention recently. In order to further improve the accuracy of individual dairy cattle recognition, an algorithm based on deep convolutional neural netw...Image based individual dairy cattle recognition has gained much attention recently. In order to further improve the accuracy of individual dairy cattle recognition, an algorithm based on deep convolutional neural network( DCNN) is proposed in this paper,which enables automatic feature extraction and classification that outperforms traditional hand craft features. Through making multigroup comparison experiments including different network layers,different sizes of convolution kernel and different feature dimensions in full connection layer,we demonstrate that the proposed method is suitable for dairy cattle classification. The experimental results show that the accuracy is significantly higher compared to two traditional image processing algorithms: scale invariant feature transform( SIFT) algorithm and bag of feature( BOF) model.展开更多
In this study,we examined the efficacy of a deep convolutional neural network(DCNN)in recognizing concrete surface images and predicting the compressive strength of concrete.A digital single-lens reflex(DSLR)camera an...In this study,we examined the efficacy of a deep convolutional neural network(DCNN)in recognizing concrete surface images and predicting the compressive strength of concrete.A digital single-lens reflex(DSLR)camera and microscope were simultaneously used to obtain concrete surface images used as the input data for the DCNN.Thereafter,training,validation,and testing of the DCNNs were performed based on the DSLR camera and microscope image data.Results of the analysis indicated that the DCNN employing DSLR image data achieved a relatively higher accuracy.The accuracy of the DSLR-derived image data was attributed to the relatively wider range of the DSLR camera,which was beneficial for extracting a larger number of features.Moreover,the DSLR camera procured more realistic images than the microscope.Thus,when the compressive strength of concrete was evaluated using the DCNN employing a DSLR camera,time and cost were reduced,whereas the usefulness increased.Furthermore,an indirect comparison of the accuracy of the DCNN with that of existing non-destructive methods for evaluating the strength of concrete proved the reliability of DCNN-derived concrete strength predictions.In addition,it was determined that the DCNN used for concrete strength evaluations in this study can be further expanded to detect and evaluate various deteriorative factors that affect the durability of structures,such as salt damage,carbonation,sulfation,corrosion,and freezing-thawing.展开更多
Early diagnosis and detection are important tasks in controlling the spread of COVID-19.A number of Deep Learning techniques has been established by researchers to detect the presence of COVID-19 using CT scan images ...Early diagnosis and detection are important tasks in controlling the spread of COVID-19.A number of Deep Learning techniques has been established by researchers to detect the presence of COVID-19 using CT scan images and X-rays.However,these methods suffer from biased results and inaccurate detection of the disease.So,the current research article developed Oppositional-based Chimp Optimization Algorithm and Deep Dense Convolutional Neural Network(OCOA-DDCNN)for COVID-19 prediction using CT images in IoT environment.The proposed methodology works on the basis of two stages such as pre-processing and prediction.Initially,CT scan images generated from prospective COVID-19 are collected from open-source system using IoT devices.The collected images are then preprocessed using Gaussian filter.Gaussian filter can be utilized in the removal of unwanted noise from the collected CT scan images.Afterwards,the preprocessed images are sent to prediction phase.In this phase,Deep Dense Convolutional Neural Network(DDCNN)is applied upon the pre-processed images.The proposed classifier is optimally designed with the consideration of Oppositional-basedChimp Optimization Algorithm(OCOA).This algorithm is utilized in the selection of optimal parameters for the proposed classifier.Finally,the proposed technique is used in the prediction of COVID-19 and classify the results as either COVID-19 or non-COVID-19.The projected method was implemented in MATLAB and the performances were evaluated through statistical measurements.The proposed method was contrasted with conventional techniques such as Convolutional Neural Network-Firefly Algorithm(CNN-FA),Emperor Penguin Optimization(CNN-EPO)respectively.The results established the supremacy of the proposed model.展开更多
The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dim...The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dimensional convolutional neural network(3D-CNN),which can extract two-di-mensional features in spatial domain and one-dimensional features in time domain,simultaneously.The network structure design is based on the deep learning framework Keras,and the discarding method and batch normalization(BN)algorithm are effectively combined with three-dimensional vis-ual geometry group block(3D-VGG-Block)to reduce the risk of overfitting while improving training speed.Aiming at the problem of the lack of samples in the data set,two methods of image flipping and small amplitude flipping are used for data amplification.Finally,the recognition rate on the data set is as high as 69.11%.Compared with the current international average micro-expression recog-nition rate of about 67%,the proposed algorithm has obvious advantages in recognition rate.展开更多
Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids ...Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics.There are a few challenges that is present in soil classification using image enhancement such as,locating and plotting soil boundaries,slopes,hazardous areas,drainage condition,land use,vegetation etc.There are some traditional approaches which involves few drawbacks such as,manual involvement which results in inaccuracy due to human interference,time consuming,inconsistent prediction etc.To overcome these draw backs and to improve the predictive analysis of soil characteristics,we propose a Hybrid Deep Learning improved BAT optimization algorithm(HDIB)for soil classification using remote sensing hyperspectral features.In HDIB,we propose a spontaneous BAT optimization algorithm for feature extraction of both spectral-spatial features by choosing pure pixels from the Hyper Spectral(HS)image.Spectral-spatial vector as training illustrations is attained by merging spatial and spectral vector by means of priority stacking methodology.Then,a recurring Deep Learning(DL)Neural Network(NN)is used for classifying the HS images,considering the datasets of Pavia University,Salinas and Tamil Nadu Hill Scene,which in turn improves the reliability of classification.Finally,the performance of the proposed HDIB based soil classifier is compared and analyzed with existing methodologies like Single Layer Perceptron(SLP),Convolutional Neural Networks(CNN)and Deep Metric Learning(DML)and it shows an improved classification accuracy of 99.87%,98.34%and 99.9%for Tamil Nadu Hills dataset,Pavia University and Salinas scene datasets respectively.展开更多
Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of ...Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of these folders deliver relevant indexing information.From the outcomes,it is dif-ficult to discover data that the user can be absorbed in.Therefore,in order to determine the significance of the data,it is important to identify the contents in an informative manner.Image annotation can be one of the greatest problematic domains in multimedia research and computer vision.Hence,in this paper,Adap-tive Convolutional Deep Learning Model(ACDLM)is developed for automatic image annotation.Initially,the databases are collected from the open-source system which consists of some labelled images(for training phase)and some unlabeled images{Corel 5 K,MSRC v2}.After that,the images are sent to the pre-processing step such as colour space quantization and texture color class map.The pre-processed images are sent to the segmentation approach for efficient labelling technique using J-image segmentation(JSEG).Thefinal step is an auto-matic annotation using ACDLM which is a combination of Convolutional Neural Network(CNN)and Honey Badger Algorithm(HBA).Based on the proposed classifier,the unlabeled images are labelled.The proposed methodology is imple-mented in MATLAB and performance is evaluated by performance metrics such as accuracy,precision,recall and F1_Measure.With the assistance of the pro-posed methodology,the unlabeled images are labelled.展开更多
Watermarking is the advanced technology utilized to secure digital data by integrating ownership or copyright protection.Most of the traditional extracting processes in audio watermarking have some restrictions due to...Watermarking is the advanced technology utilized to secure digital data by integrating ownership or copyright protection.Most of the traditional extracting processes in audio watermarking have some restrictions due to low reliability to various attacks.Hence,a deep learning-based audio watermarking system is proposed in this research to overcome the restriction in the traditional methods.The implication of the research relies on enhancing the performance of the watermarking system using the Discrete Wavelet Transform(DWT)and the optimized deep learning technique.The selection of optimal embedding location is the research contribution that is carried out by the deep convolutional neural network(DCNN).The hyperparameter tuning is performed by the so-called search location optimization,which minimizes the errors in the classifier.The experimental result reveals that the proposed digital audio watermarking system provides better robustness and performance in terms of Bit Error Rate(BER),Mean Square Error(MSE),and Signal-to-noise ratio.The BER,MSE,and SNR of the proposed audio watermarking model without the noise are 0.082,0.099,and 45.363 respectively,which is found to be better performance than the existing watermarking models.展开更多
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid...In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy.展开更多
Offensive messages on social media,have recently been frequently used to harass and criticize people.In recent studies,many promising algorithms have been developed to identify offensive texts.Most algorithms analyze ...Offensive messages on social media,have recently been frequently used to harass and criticize people.In recent studies,many promising algorithms have been developed to identify offensive texts.Most algorithms analyze text in a unidirectional manner,where a bidirectional method can maximize performance results and capture semantic and contextual information in sentences.In addition,there are many separate models for identifying offensive texts based on monolin-gual and multilingual,but there are a few models that can detect both monolingual and multilingual-based offensive texts.In this study,a detection system has been developed for both monolingual and multilingual offensive texts by combining deep convolutional neural network and bidirectional encoder representations from transformers(Deep-BERT)to identify offensive posts on social media that are used to harass others.This paper explores a variety of ways to deal with multilin-gualism,including collaborative multilingual and translation-based approaches.Then,the Deep-BERT is tested on the Bengali and English datasets,including the different bidirectional encoder representations from transformers(BERT)pre-trained word-embedding techniques,and found that the proposed Deep-BERT’s efficacy outperformed all existing offensive text classification algorithms reaching an accuracy of 91.83%.The proposed model is a state-of-the-art model that can classify both monolingual-based and multilingual-based offensive texts.展开更多
Signal processing based research was adopted with Electroencephalogram(EEG)for predicting the abnormality and cerebral activities.The proposed research work is intended to provide an automatic diagnostic system to det...Signal processing based research was adopted with Electroencephalogram(EEG)for predicting the abnormality and cerebral activities.The proposed research work is intended to provide an automatic diagnostic system to determine the EEG signal in order to classify the brain function which shows whether a person is affected with schizophrenia or not.Early detection and intervention are vital for better prognosis.However,the diagnosis of schizophrenia still depends on clinical observation to date.Without reliable biomarkers,schizophrenia is difficult to detect in its early phase and hence we have proposed this idea.In this work,the EEG signal series are divided into non-linear feature mining,classification and validation,and t-test integrated feature selection process.For this work,19-channel EEG signals are utilized from schizophrenia class and normal pattern.Here,the datasets initially execute the splitting process based on raw 19-channel EEG into 6250 sample point’s sequences.With this process,1142 features of normal and schizophrenia class patterns can be obtained.In other hand,157 features from each EEG patterns are utilized based on Non-linear feature extraction process where 14 principal features can be identified in terms of considering the essential features.At last,the Deep Learning(DL)technique incorporated with an effective optimization technique is adopted for classification process called a Deep Convolutional Neural Network(DCNN)with mayfly optimization algorithm.The proposed technique is implemented into the platform of MATLAB in order to obtain better results and is analyzed based on the performance analysis framework such as accuracy,Signal to Noise Ratio(SNR),Mean Square Error,Normalized Mean Square Error(NMSE)and Loss.Through comparison,the proposed technique is proved to a better technique than other existing techniques.展开更多
With the rapid development of sports,the number of sports images has increased dramatically.Intelligent and automatic processing and analysis of moving images are significant,which can not only facilitate users to qui...With the rapid development of sports,the number of sports images has increased dramatically.Intelligent and automatic processing and analysis of moving images are significant,which can not only facilitate users to quickly search and access moving images but also facilitate staff to store and manage moving image data and contribute to the intellectual development of the sports industry.In this paper,a method of table tennis identification and positioning based on a convolutional neural network is proposed,which solves the problem that the identification and positioning method based on color features and contour features is not adaptable in various environments.At the same time,the learning methods and techniques of table tennis detection,positioning,and trajectory prediction are studied.A deep learning framework for recognition learning of rotating flying table tennis is put forward.The mechanism and methods of positioning,trajectory prediction,and intelligent automatic processing of moving images are studied,and the self-built data sets are trained and verified.展开更多
Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a cha...Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a challenging task for farmers in earlier stage of crop growth because of similarity.To address this issue,an efficient weed classification model is proposed with the Deep Convolutional Neural Network(CNN)that implements automatic feature extraction and performs complex feature learning for image classification.Throughout this work,weed images were trained using the proposed CNN model with evolutionary computing approach to classify the weeds based on the two publicly available weed datasets.The Tamil Nadu Agricultural University(TNAU)dataset used as afirst dataset that consists of 40 classes of weed images and the other dataset is from Indian Council of Agriculture Research–Directorate of Weed Research(ICAR-DWR)which contains 50 classes of weed images.An effective Particle Swarm Optimization(PSO)technique is applied in the proposed CNN to automa-tically evolve and improve its classification accuracy.The proposed model was evaluated and compared with pre-trained transfer learning models such as GoogLeNet,AlexNet,Residual neural Network(ResNet)and Visual Geometry Group Network(VGGNet)for weed classification.This work shows that the performance of the PSO assisted proposed CNN model is significantly improved the success rate by 98.58%for TNAU and 97.79%for ICAR-DWR weed datasets.展开更多
针对现有恶意域名检测方法对域名生成算法(domain generation algorithm, DGA)随机产生的恶意域名检测性能不高,且对由随机单词组成的恶意域名检测效果较差的问题,提出一种基于字符和词特征融合的恶意域名检测算法(cha-racter and word ...针对现有恶意域名检测方法对域名生成算法(domain generation algorithm, DGA)随机产生的恶意域名检测性能不高,且对由随机单词组成的恶意域名检测效果较差的问题,提出一种基于字符和词特征融合的恶意域名检测算法(cha-racter and word network, CWNet)。利用并行卷积神经网络分别提取域名中字符和词的特征;将两种特征进行拼接,构造成融合特征;利用Softmax函数实现合法域名与恶意域名的检测。实验结果表明,该算法可以提升对恶意域名的检测能力,对更具挑战性的恶意域名家族的检测准确率提升效果更为明显。展开更多
为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出...为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出一种基于改进模糊KMeans聚类算法的VGG13深度卷积神经网络(VGG13-KMeans)模型,并将其应用于寻常型银屑病的诊断任务中。实验结果表明,相较于VGG13以及ResNet18两种方法,本文方法更适用于对银屑病特征的识别。展开更多
基金supported by Project No.R-2023-23 of the Deanship of Scientific Research at Majmaah University.
文摘At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns still need enhancement,particularly accuracy,sensitivity,false positive and false negative,to improve the brain tumor prediction system symmetrically.Therefore,this work proposed an Extended Deep Learning Algorithm(EDLA)to measure performance parameters such as accuracy,sensitivity,and false positive and false negative rates.In addition,these iterated measures were analyzed by comparing the EDLA method with the Convolutional Neural Network(CNN)way further using the SPSS tool,and respective graphical illustrations were shown.The results were that the mean performance measures for the proposed EDLA algorithm were calculated,and those measured were accuracy(97.665%),sensitivity(97.939%),false positive(3.012%),and false negative(3.182%)for ten iterations.Whereas in the case of the CNN,the algorithm means accuracy gained was 94.287%,mean sensitivity 95.612%,mean false positive 5.328%,and mean false negative 4.756%.These results show that the proposed EDLA method has outperformed existing algorithms,including CNN,and ensures symmetrically improved parameters.Thus EDLA algorithm introduces novelty concerning its performance and particular activation function.This proposed method will be utilized effectively in brain tumor detection in a precise and accurate manner.This algorithm would apply to brain tumor diagnosis and be involved in various medical diagnoses aftermodification.If the quantity of dataset records is enormous,then themethod’s computation power has to be updated.
基金Science and Technology Support Plan Project of Tianjin Municipal Science and Technology Commission(No.15ZCZDNC00130)
文摘Image based individual dairy cattle recognition has gained much attention recently. In order to further improve the accuracy of individual dairy cattle recognition, an algorithm based on deep convolutional neural network( DCNN) is proposed in this paper,which enables automatic feature extraction and classification that outperforms traditional hand craft features. Through making multigroup comparison experiments including different network layers,different sizes of convolution kernel and different feature dimensions in full connection layer,we demonstrate that the proposed method is suitable for dairy cattle classification. The experimental results show that the accuracy is significantly higher compared to two traditional image processing algorithms: scale invariant feature transform( SIFT) algorithm and bag of feature( BOF) model.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2018R1A2B6007333)This study was supported by 2018 Research Grant from Kangwon National University.
文摘In this study,we examined the efficacy of a deep convolutional neural network(DCNN)in recognizing concrete surface images and predicting the compressive strength of concrete.A digital single-lens reflex(DSLR)camera and microscope were simultaneously used to obtain concrete surface images used as the input data for the DCNN.Thereafter,training,validation,and testing of the DCNNs were performed based on the DSLR camera and microscope image data.Results of the analysis indicated that the DCNN employing DSLR image data achieved a relatively higher accuracy.The accuracy of the DSLR-derived image data was attributed to the relatively wider range of the DSLR camera,which was beneficial for extracting a larger number of features.Moreover,the DSLR camera procured more realistic images than the microscope.Thus,when the compressive strength of concrete was evaluated using the DCNN employing a DSLR camera,time and cost were reduced,whereas the usefulness increased.Furthermore,an indirect comparison of the accuracy of the DCNN with that of existing non-destructive methods for evaluating the strength of concrete proved the reliability of DCNN-derived concrete strength predictions.In addition,it was determined that the DCNN used for concrete strength evaluations in this study can be further expanded to detect and evaluate various deteriorative factors that affect the durability of structures,such as salt damage,carbonation,sulfation,corrosion,and freezing-thawing.
文摘Early diagnosis and detection are important tasks in controlling the spread of COVID-19.A number of Deep Learning techniques has been established by researchers to detect the presence of COVID-19 using CT scan images and X-rays.However,these methods suffer from biased results and inaccurate detection of the disease.So,the current research article developed Oppositional-based Chimp Optimization Algorithm and Deep Dense Convolutional Neural Network(OCOA-DDCNN)for COVID-19 prediction using CT images in IoT environment.The proposed methodology works on the basis of two stages such as pre-processing and prediction.Initially,CT scan images generated from prospective COVID-19 are collected from open-source system using IoT devices.The collected images are then preprocessed using Gaussian filter.Gaussian filter can be utilized in the removal of unwanted noise from the collected CT scan images.Afterwards,the preprocessed images are sent to prediction phase.In this phase,Deep Dense Convolutional Neural Network(DDCNN)is applied upon the pre-processed images.The proposed classifier is optimally designed with the consideration of Oppositional-basedChimp Optimization Algorithm(OCOA).This algorithm is utilized in the selection of optimal parameters for the proposed classifier.Finally,the proposed technique is used in the prediction of COVID-19 and classify the results as either COVID-19 or non-COVID-19.The projected method was implemented in MATLAB and the performances were evaluated through statistical measurements.The proposed method was contrasted with conventional techniques such as Convolutional Neural Network-Firefly Algorithm(CNN-FA),Emperor Penguin Optimization(CNN-EPO)respectively.The results established the supremacy of the proposed model.
基金Supported by the Shaanxi Province Key Research and Development Project(No.2021GY-280)Shaanxi Province Natural Science Basic Re-search Program Project(No.2021JM-459)+1 种基金the National Natural Science Foundation of China(No.61834005,61772417,61802304,61602377,61634004)the Shaanxi Province International Science and Technology Cooperation Project(No.2018KW-006).
文摘The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dimensional convolutional neural network(3D-CNN),which can extract two-di-mensional features in spatial domain and one-dimensional features in time domain,simultaneously.The network structure design is based on the deep learning framework Keras,and the discarding method and batch normalization(BN)algorithm are effectively combined with three-dimensional vis-ual geometry group block(3D-VGG-Block)to reduce the risk of overfitting while improving training speed.Aiming at the problem of the lack of samples in the data set,two methods of image flipping and small amplitude flipping are used for data amplification.Finally,the recognition rate on the data set is as high as 69.11%.Compared with the current international average micro-expression recog-nition rate of about 67%,the proposed algorithm has obvious advantages in recognition rate.
文摘Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics.There are a few challenges that is present in soil classification using image enhancement such as,locating and plotting soil boundaries,slopes,hazardous areas,drainage condition,land use,vegetation etc.There are some traditional approaches which involves few drawbacks such as,manual involvement which results in inaccuracy due to human interference,time consuming,inconsistent prediction etc.To overcome these draw backs and to improve the predictive analysis of soil characteristics,we propose a Hybrid Deep Learning improved BAT optimization algorithm(HDIB)for soil classification using remote sensing hyperspectral features.In HDIB,we propose a spontaneous BAT optimization algorithm for feature extraction of both spectral-spatial features by choosing pure pixels from the Hyper Spectral(HS)image.Spectral-spatial vector as training illustrations is attained by merging spatial and spectral vector by means of priority stacking methodology.Then,a recurring Deep Learning(DL)Neural Network(NN)is used for classifying the HS images,considering the datasets of Pavia University,Salinas and Tamil Nadu Hill Scene,which in turn improves the reliability of classification.Finally,the performance of the proposed HDIB based soil classifier is compared and analyzed with existing methodologies like Single Layer Perceptron(SLP),Convolutional Neural Networks(CNN)and Deep Metric Learning(DML)and it shows an improved classification accuracy of 99.87%,98.34%and 99.9%for Tamil Nadu Hills dataset,Pavia University and Salinas scene datasets respectively.
文摘Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of these folders deliver relevant indexing information.From the outcomes,it is dif-ficult to discover data that the user can be absorbed in.Therefore,in order to determine the significance of the data,it is important to identify the contents in an informative manner.Image annotation can be one of the greatest problematic domains in multimedia research and computer vision.Hence,in this paper,Adap-tive Convolutional Deep Learning Model(ACDLM)is developed for automatic image annotation.Initially,the databases are collected from the open-source system which consists of some labelled images(for training phase)and some unlabeled images{Corel 5 K,MSRC v2}.After that,the images are sent to the pre-processing step such as colour space quantization and texture color class map.The pre-processed images are sent to the segmentation approach for efficient labelling technique using J-image segmentation(JSEG).Thefinal step is an auto-matic annotation using ACDLM which is a combination of Convolutional Neural Network(CNN)and Honey Badger Algorithm(HBA).Based on the proposed classifier,the unlabeled images are labelled.The proposed methodology is imple-mented in MATLAB and performance is evaluated by performance metrics such as accuracy,precision,recall and F1_Measure.With the assistance of the pro-posed methodology,the unlabeled images are labelled.
文摘Watermarking is the advanced technology utilized to secure digital data by integrating ownership or copyright protection.Most of the traditional extracting processes in audio watermarking have some restrictions due to low reliability to various attacks.Hence,a deep learning-based audio watermarking system is proposed in this research to overcome the restriction in the traditional methods.The implication of the research relies on enhancing the performance of the watermarking system using the Discrete Wavelet Transform(DWT)and the optimized deep learning technique.The selection of optimal embedding location is the research contribution that is carried out by the deep convolutional neural network(DCNN).The hyperparameter tuning is performed by the so-called search location optimization,which minimizes the errors in the classifier.The experimental result reveals that the proposed digital audio watermarking system provides better robustness and performance in terms of Bit Error Rate(BER),Mean Square Error(MSE),and Signal-to-noise ratio.The BER,MSE,and SNR of the proposed audio watermarking model without the noise are 0.082,0.099,and 45.363 respectively,which is found to be better performance than the existing watermarking models.
基金The National Natural Science Foundation of China(No.61603091)。
文摘In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy.
文摘Offensive messages on social media,have recently been frequently used to harass and criticize people.In recent studies,many promising algorithms have been developed to identify offensive texts.Most algorithms analyze text in a unidirectional manner,where a bidirectional method can maximize performance results and capture semantic and contextual information in sentences.In addition,there are many separate models for identifying offensive texts based on monolin-gual and multilingual,but there are a few models that can detect both monolingual and multilingual-based offensive texts.In this study,a detection system has been developed for both monolingual and multilingual offensive texts by combining deep convolutional neural network and bidirectional encoder representations from transformers(Deep-BERT)to identify offensive posts on social media that are used to harass others.This paper explores a variety of ways to deal with multilin-gualism,including collaborative multilingual and translation-based approaches.Then,the Deep-BERT is tested on the Bengali and English datasets,including the different bidirectional encoder representations from transformers(BERT)pre-trained word-embedding techniques,and found that the proposed Deep-BERT’s efficacy outperformed all existing offensive text classification algorithms reaching an accuracy of 91.83%.The proposed model is a state-of-the-art model that can classify both monolingual-based and multilingual-based offensive texts.
文摘Signal processing based research was adopted with Electroencephalogram(EEG)for predicting the abnormality and cerebral activities.The proposed research work is intended to provide an automatic diagnostic system to determine the EEG signal in order to classify the brain function which shows whether a person is affected with schizophrenia or not.Early detection and intervention are vital for better prognosis.However,the diagnosis of schizophrenia still depends on clinical observation to date.Without reliable biomarkers,schizophrenia is difficult to detect in its early phase and hence we have proposed this idea.In this work,the EEG signal series are divided into non-linear feature mining,classification and validation,and t-test integrated feature selection process.For this work,19-channel EEG signals are utilized from schizophrenia class and normal pattern.Here,the datasets initially execute the splitting process based on raw 19-channel EEG into 6250 sample point’s sequences.With this process,1142 features of normal and schizophrenia class patterns can be obtained.In other hand,157 features from each EEG patterns are utilized based on Non-linear feature extraction process where 14 principal features can be identified in terms of considering the essential features.At last,the Deep Learning(DL)technique incorporated with an effective optimization technique is adopted for classification process called a Deep Convolutional Neural Network(DCNN)with mayfly optimization algorithm.The proposed technique is implemented into the platform of MATLAB in order to obtain better results and is analyzed based on the performance analysis framework such as accuracy,Signal to Noise Ratio(SNR),Mean Square Error,Normalized Mean Square Error(NMSE)and Loss.Through comparison,the proposed technique is proved to a better technique than other existing techniques.
文摘With the rapid development of sports,the number of sports images has increased dramatically.Intelligent and automatic processing and analysis of moving images are significant,which can not only facilitate users to quickly search and access moving images but also facilitate staff to store and manage moving image data and contribute to the intellectual development of the sports industry.In this paper,a method of table tennis identification and positioning based on a convolutional neural network is proposed,which solves the problem that the identification and positioning method based on color features and contour features is not adaptable in various environments.At the same time,the learning methods and techniques of table tennis detection,positioning,and trajectory prediction are studied.A deep learning framework for recognition learning of rotating flying table tennis is put forward.The mechanism and methods of positioning,trajectory prediction,and intelligent automatic processing of moving images are studied,and the self-built data sets are trained and verified.
文摘Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a challenging task for farmers in earlier stage of crop growth because of similarity.To address this issue,an efficient weed classification model is proposed with the Deep Convolutional Neural Network(CNN)that implements automatic feature extraction and performs complex feature learning for image classification.Throughout this work,weed images were trained using the proposed CNN model with evolutionary computing approach to classify the weeds based on the two publicly available weed datasets.The Tamil Nadu Agricultural University(TNAU)dataset used as afirst dataset that consists of 40 classes of weed images and the other dataset is from Indian Council of Agriculture Research–Directorate of Weed Research(ICAR-DWR)which contains 50 classes of weed images.An effective Particle Swarm Optimization(PSO)technique is applied in the proposed CNN to automa-tically evolve and improve its classification accuracy.The proposed model was evaluated and compared with pre-trained transfer learning models such as GoogLeNet,AlexNet,Residual neural Network(ResNet)and Visual Geometry Group Network(VGGNet)for weed classification.This work shows that the performance of the PSO assisted proposed CNN model is significantly improved the success rate by 98.58%for TNAU and 97.79%for ICAR-DWR weed datasets.
文摘针对现有恶意域名检测方法对域名生成算法(domain generation algorithm, DGA)随机产生的恶意域名检测性能不高,且对由随机单词组成的恶意域名检测效果较差的问题,提出一种基于字符和词特征融合的恶意域名检测算法(cha-racter and word network, CWNet)。利用并行卷积神经网络分别提取域名中字符和词的特征;将两种特征进行拼接,构造成融合特征;利用Softmax函数实现合法域名与恶意域名的检测。实验结果表明,该算法可以提升对恶意域名的检测能力,对更具挑战性的恶意域名家族的检测准确率提升效果更为明显。
文摘为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出一种基于改进模糊KMeans聚类算法的VGG13深度卷积神经网络(VGG13-KMeans)模型,并将其应用于寻常型银屑病的诊断任务中。实验结果表明,相较于VGG13以及ResNet18两种方法,本文方法更适用于对银屑病特征的识别。