This investigation deals with the intelligent system for parallel fault-tolerant diagnostic tests construction. A modified parallel algorithm for fault-tolerant diagnostic tests construction is proposed. The algorithm...This investigation deals with the intelligent system for parallel fault-tolerant diagnostic tests construction. A modified parallel algorithm for fault-tolerant diagnostic tests construction is proposed. The algorithm is allowed to optimize processing time on tests construction. A matrix model of data and knowledge representation, as well as various kinds of regularities in data and knowledge are presented. Applied intelligent system for diagnostic of mental health of population which is developed with the use of intelligent system for parallel fault-tolerant DTs construction is suggested.展开更多
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or...Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.展开更多
An accurate numerical algorithm for three-line fault involving different phases from each of two-parallel lines is presented. It is based on one-terminal voltage and current data. The loop and nodel equations comparin...An accurate numerical algorithm for three-line fault involving different phases from each of two-parallel lines is presented. It is based on one-terminal voltage and current data. The loop and nodel equations comparing faulted phase to non-faulted phase of two-parallel lines are introduced in the fault location estimation modal, in which the faulted impedance of remote end is not involved. The effect of load flow and fault resistance on the accuracy of fault location are effectively eliminated, therefore an accurate algorithm of locating fault is derived. The algorithm is demonstrated by digital computer simulations and the results show that errors in locating fault are less than 1%.展开更多
Average (mean) voter is one of the commonest voting methods suitable for decision making in highly-available and long-missions applications where the availability and the speed of the system are critical.In this pap...Average (mean) voter is one of the commonest voting methods suitable for decision making in highly-available and long-missions applications where the availability and the speed of the system are critical.In this paper,a new generation of average voter based on parallel algorithms and parallel random access machine(PRAM) structure are proposed.The analysis shows that this algorithm is optimal due to its improved time complexity,speed-up,and efficiency and is especially appropriate for applications where the size of input space is large.展开更多
At present, the operational parallel compensating capacitors can only through the protection action for the information, so we can‘t location the fault capacitor. In order to obtain every parallel capacitor running s...At present, the operational parallel compensating capacitors can only through the protection action for the information, so we can‘t location the fault capacitor. In order to obtain every parallel capacitor running status information and meanwhile according to internal structure and the operation mode of film capacitor, this paper established the physical model on the single capacitor and the capacitors and simulated different forms of capacitor fault model and calculated currents changes which flow through the capacitor in every group. According to the above situation, we established fault criterion matrix of capacitors. The simulation results show that the fault criterion matrix can reflect capacitor running state information accurately, and it positioned fault capacitor effectively.展开更多
Fault location and distance protection are essential smart grid technologies ensuring reliability of the power system. This paper describes an accurate algorithm for locating faults on double-circuit transmission line...Fault location and distance protection are essential smart grid technologies ensuring reliability of the power system. This paper describes an accurate algorithm for locating faults on double-circuit transmission lines. The proposed approach is capable of identifying the faulted circuit of a parallel transmission line by checking the estimated fault location and fault resistance. Voltage and current measurements from only one of the terminals of the faulty line are used. No pre-fault data are required for the estimation. The lumped parameter line model considering shunt capacitance is utilized for the derivation of the algorithm. It’s assumed that line parameters are known and transmission lines are fully transposed. The method is applicable to all types of faults. It’s evinced by evaluation studies that the proposed algorithm can correctly determine the faulted circuit in most cases. For exceptional cases, the current waveforms during the fault can be used to help identify the faulted circuit. The proposed algorithm generates quite accurate fault location estimates, and may be suitable for distance relaying.展开更多
文摘This investigation deals with the intelligent system for parallel fault-tolerant diagnostic tests construction. A modified parallel algorithm for fault-tolerant diagnostic tests construction is proposed. The algorithm is allowed to optimize processing time on tests construction. A matrix model of data and knowledge representation, as well as various kinds of regularities in data and knowledge are presented. Applied intelligent system for diagnostic of mental health of population which is developed with the use of intelligent system for parallel fault-tolerant DTs construction is suggested.
基金This project is supported by Provincial Science Foundation of Education Office of Hebei(No.Z2004455)Youth Research Fundation of State Power of China(No.SPQKJ02-10).
文摘Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.
文摘An accurate numerical algorithm for three-line fault involving different phases from each of two-parallel lines is presented. It is based on one-terminal voltage and current data. The loop and nodel equations comparing faulted phase to non-faulted phase of two-parallel lines are introduced in the fault location estimation modal, in which the faulted impedance of remote end is not involved. The effect of load flow and fault resistance on the accuracy of fault location are effectively eliminated, therefore an accurate algorithm of locating fault is derived. The algorithm is demonstrated by digital computer simulations and the results show that errors in locating fault are less than 1%.
文摘Average (mean) voter is one of the commonest voting methods suitable for decision making in highly-available and long-missions applications where the availability and the speed of the system are critical.In this paper,a new generation of average voter based on parallel algorithms and parallel random access machine(PRAM) structure are proposed.The analysis shows that this algorithm is optimal due to its improved time complexity,speed-up,and efficiency and is especially appropriate for applications where the size of input space is large.
文摘At present, the operational parallel compensating capacitors can only through the protection action for the information, so we can‘t location the fault capacitor. In order to obtain every parallel capacitor running status information and meanwhile according to internal structure and the operation mode of film capacitor, this paper established the physical model on the single capacitor and the capacitors and simulated different forms of capacitor fault model and calculated currents changes which flow through the capacitor in every group. According to the above situation, we established fault criterion matrix of capacitors. The simulation results show that the fault criterion matrix can reflect capacitor running state information accurately, and it positioned fault capacitor effectively.
文摘Fault location and distance protection are essential smart grid technologies ensuring reliability of the power system. This paper describes an accurate algorithm for locating faults on double-circuit transmission lines. The proposed approach is capable of identifying the faulted circuit of a parallel transmission line by checking the estimated fault location and fault resistance. Voltage and current measurements from only one of the terminals of the faulty line are used. No pre-fault data are required for the estimation. The lumped parameter line model considering shunt capacitance is utilized for the derivation of the algorithm. It’s assumed that line parameters are known and transmission lines are fully transposed. The method is applicable to all types of faults. It’s evinced by evaluation studies that the proposed algorithm can correctly determine the faulted circuit in most cases. For exceptional cases, the current waveforms during the fault can be used to help identify the faulted circuit. The proposed algorithm generates quite accurate fault location estimates, and may be suitable for distance relaying.