Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybri...Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-展开更多
The paper presents a robust parallel distributed compensation (PDC) fuzzy controller for a nonlinear and certain system in continuous time described by the Tal^gi-Sugeno (T-S) fuzzy model. This controller is based...The paper presents a robust parallel distributed compensation (PDC) fuzzy controller for a nonlinear and certain system in continuous time described by the Tal^gi-Sugeno (T-S) fuzzy model. This controller is based on a new type of time-varying fuzzy sets (TVFS). These fuzzy sets are characterized by displacement of the kernels to the right or left of the universe of discourse, and they are directed by a well-defined criterion. In this work, we only focused on the movement of midpoint of the universe. The movements of this midpoint are optimized by particle swarm optimization (PSO) approach.展开更多
基金supported by the Natural Science Foundation of Hubei Province(Grant No.2015CFB586)
文摘Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-
文摘The paper presents a robust parallel distributed compensation (PDC) fuzzy controller for a nonlinear and certain system in continuous time described by the Tal^gi-Sugeno (T-S) fuzzy model. This controller is based on a new type of time-varying fuzzy sets (TVFS). These fuzzy sets are characterized by displacement of the kernels to the right or left of the universe of discourse, and they are directed by a well-defined criterion. In this work, we only focused on the movement of midpoint of the universe. The movements of this midpoint are optimized by particle swarm optimization (PSO) approach.