In order to obtain direct solutions of parallel manipulator without divergence in real time,a modified global Newton-Raphson(MGNR) algorithm was proposed for forward kinematics analysis of six-degree-of-freedom(DOF) p...In order to obtain direct solutions of parallel manipulator without divergence in real time,a modified global Newton-Raphson(MGNR) algorithm was proposed for forward kinematics analysis of six-degree-of-freedom(DOF) parallel manipulator.Based on geometrical frame of parallel manipulator,the highly nonlinear equations of kinematics were derived using analytical approach.The MGNR algorithm was developed for the nonlinear equations based on Tailor expansion and Newton-Raphson iteration.The procedure of MGNR algorithm was programmed in Matlab/Simulink and compiled to a real-time computer with Microsoft visual studio.NET for implementation.The performance of the MGNR algorithms for 6-DOF parallel manipulator was analyzed and confirmed.Applying the MGNR algorithm,the real generalized pose of moving platform is solved by using the set of given positions of actuators.The theoretical analysis and numerical results indicate that the presented method can achieve the numerical convergent solution in less than 1 ms with high accuracy(1×10-9 m in linear motion and 1×10-9 rad in angular motion),even the initial guess value is far from the root.展开更多
Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Fi...Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical.展开更多
: This paper deals with the universal serial manipulator on the inverse kinematics problem of plane type, the fast working space solution method, and the obstacle avoidance path planning method. With the vector proje...: This paper deals with the universal serial manipulator on the inverse kinematics problem of plane type, the fast working space solution method, and the obstacle avoidance path planning method. With the vector projection as the main constraint condition of the target, it proposes a general form of the inverse kinematics solution which does not depend on the robot configuration of freedom degree. By identifying the target vector direction maximum and minimum workspace boundary and determining the destination vector by thick search on the workspaee boundary method, an expressing method of the polar coordinate form of work space is then introduced. Finally, according to the form of plane trajectory planning for obstacle avoidance problem, the method of solving the inverse kinematics solution of the concave and convex forms of the safe obstacle avoidance area is improved. The simulation results verify that the proposed method has feasibility and generality.展开更多
Forward and backward reaching inverse kinematics(FABRIK)is an efficient two-stage iterative solver for inverse kinematics of spherical-joint manipulator without the calculation of Jacobian matrix.Based on FABRIK,this ...Forward and backward reaching inverse kinematics(FABRIK)is an efficient two-stage iterative solver for inverse kinematics of spherical-joint manipulator without the calculation of Jacobian matrix.Based on FABRIK,this paper presents an incremental control scheme for a free-floating space manipulator consists of revolute joints and rigid links with the consideration of joint constraints and dynamic coupling effect.Due to the characteristics of FABRIK,it can induce large angular movements on specific joints.Apart from that,FABRIK maps three dimensional(3D)problem into two dimensional(2D)problem by a simple geometric projection.This operation can cause infinite loops in some cases.In order to overcome these issues and apply FABRIK on space manipulators,an increments allocation method is developed to constrain the angular movements as well as to re-orient the end-effector.The manipulator is re-positioned based on the momentum conservation law.Instead of pure target position tracking,the orientation control of the end-effector is also considered.Numerical simulation is performed to testify and demonstrate the effectiveness and reliability of the proposed incremental control approach.展开更多
基金Project(HgdJG00401D04) supported by National 921 Manned Space Project Foundation of ChinaProject(SKLRS200803B) supported by the Self-Planned Task Foundation of State Key Laboratory of Robotics and System (HIT) of China+1 种基金Project(CDAZ98502211) supported by China’s "World Class University (985)" Project FoundationProject(50975055) supported by the National Natural Science Foundation of China
文摘In order to obtain direct solutions of parallel manipulator without divergence in real time,a modified global Newton-Raphson(MGNR) algorithm was proposed for forward kinematics analysis of six-degree-of-freedom(DOF) parallel manipulator.Based on geometrical frame of parallel manipulator,the highly nonlinear equations of kinematics were derived using analytical approach.The MGNR algorithm was developed for the nonlinear equations based on Tailor expansion and Newton-Raphson iteration.The procedure of MGNR algorithm was programmed in Matlab/Simulink and compiled to a real-time computer with Microsoft visual studio.NET for implementation.The performance of the MGNR algorithms for 6-DOF parallel manipulator was analyzed and confirmed.Applying the MGNR algorithm,the real generalized pose of moving platform is solved by using the set of given positions of actuators.The theoretical analysis and numerical results indicate that the presented method can achieve the numerical convergent solution in less than 1 ms with high accuracy(1×10-9 m in linear motion and 1×10-9 rad in angular motion),even the initial guess value is far from the root.
文摘Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51205074)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20112304120007)+2 种基金the Harbin Specialized Research Foundation for Innovation Talents(Grant No.RC2012QN009037)the Fundamental Research Funds for the Central Universities(Grant No.HEUCF041505)the State Commission of Science Technology of China(Grant No.2014DFR10010)
文摘: This paper deals with the universal serial manipulator on the inverse kinematics problem of plane type, the fast working space solution method, and the obstacle avoidance path planning method. With the vector projection as the main constraint condition of the target, it proposes a general form of the inverse kinematics solution which does not depend on the robot configuration of freedom degree. By identifying the target vector direction maximum and minimum workspace boundary and determining the destination vector by thick search on the workspaee boundary method, an expressing method of the polar coordinate form of work space is then introduced. Finally, according to the form of plane trajectory planning for obstacle avoidance problem, the method of solving the inverse kinematics solution of the concave and convex forms of the safe obstacle avoidance area is improved. The simulation results verify that the proposed method has feasibility and generality.
基金supported by the National Natural Science Foundation of China(Nos.61803312,91848205 and 61725303).
文摘Forward and backward reaching inverse kinematics(FABRIK)is an efficient two-stage iterative solver for inverse kinematics of spherical-joint manipulator without the calculation of Jacobian matrix.Based on FABRIK,this paper presents an incremental control scheme for a free-floating space manipulator consists of revolute joints and rigid links with the consideration of joint constraints and dynamic coupling effect.Due to the characteristics of FABRIK,it can induce large angular movements on specific joints.Apart from that,FABRIK maps three dimensional(3D)problem into two dimensional(2D)problem by a simple geometric projection.This operation can cause infinite loops in some cases.In order to overcome these issues and apply FABRIK on space manipulators,an increments allocation method is developed to constrain the angular movements as well as to re-orient the end-effector.The manipulator is re-positioned based on the momentum conservation law.Instead of pure target position tracking,the orientation control of the end-effector is also considered.Numerical simulation is performed to testify and demonstrate the effectiveness and reliability of the proposed incremental control approach.