Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate th...Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate the configuration stiffness of mechanisms during the mechanism design stage.It is a challenge to select appropriate 2R1T PMs with excellent stiffness performance during the design stage.Considering the operational status of 2R1T PMs,the bending and torsional stiffness are considered as indices to evaluate PMs'configuration stiffness.Subsequently,a specific method is proposed to calculate these stiffness indices.Initially,the various types of structural and driving stiffness for each branch are assessed and their specific values defined.Subsequently,a rigid-flexible coupled force model for the over-constrained 2R1T PM is established,and the proposed evaluation method is used to analyze the configuration stiffness of the five 2R1T PMs in the entire workspace.Finally,the driving force and constraint force of each branch in the whole working space are calculated to further elucidate the stiffness evaluating results by using the proposed method above.The obtained results demonstrate that the bending and torsional stiffness of the 2RPU/UPR/RPR mechanism along the x and y-directions are larger than the other four mechanisms.展开更多
The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the hum...The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the human ankle to the UR model and proposes a novel three degrees of freedom(3-DOF)generalized spherical parallel mechanism for ankle rehabilitation.The parallel mechanism has two spherical centers corresponding to the rotation centers of tibiotalar and subtalar joints.Using screw theory,the mobility of the parallel mechanism,which meets the requirements of the human ankle,is analyzed.The inverse kinematics are presented,and singularities are identified based on the Jacobian matrix.The workspaces of the parallel mechanism are obtained through the search method and compared with the motion range of the human ankle,which shows that the parallel mechanism can meet the motion demand of ankle rehabilitation.Additionally,based on the motion-force transmissibility,the performance atlases are plotted in the parameter optimal design space,and the optimum parameter is obtained according to the demands of practical applications.The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and has excellent kinematic performance in its rehabilitation range,which provides a theoretical basis for the prototype design and experimental verification.展开更多
Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanism...Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.展开更多
Power-assisted upper-limb exoskeletons are primarily used to improve the handling efficiency and load capacity.However,kinematic mismatch between the kinematics and biological joints is a major problem in most existin...Power-assisted upper-limb exoskeletons are primarily used to improve the handling efficiency and load capacity.However,kinematic mismatch between the kinematics and biological joints is a major problem in most existing exoskeletons,because it reduces the boosting effect and causes pain and long-term joint damage in humans.In this study,a shoulder augmentation exoskeleton was designed based on a parallel mechanism that solves the shoulder dislocation problem using the upper arm as a passive limb.Consequently,the human–machine synergy and wearability of the exoskeleton system were improved without increasing the volume and weight of the system.A parallel mechanism was used as the structural body of the shoulder joint exoskeleton,and its workspace,dexterity,and stiffness were analyzed.Additionally,an ergonomic model was developed using the principle of virtual work,and a case analysis was performed considering the lifting of heavy objects.The results show that the upper arm reduces the driving force requirement in coordinated motion,enhances the load capacity of the system,and achieves excellent assistance.展开更多
Regular inspection of bridge cracks is crucial to bridge maintenance and repair.The traditional manual crack detection methods are timeconsuming,dangerous and subjective.At the same time,for the existing mainstream vi...Regular inspection of bridge cracks is crucial to bridge maintenance and repair.The traditional manual crack detection methods are timeconsuming,dangerous and subjective.At the same time,for the existing mainstream vision-based automatic crack detection algorithms,it is challenging to detect fine cracks and balance the detection accuracy and speed.Therefore,this paper proposes a new bridge crack segmentationmethod based on parallel attention mechanism and multi-scale features fusion on top of the DeeplabV3+network framework.First,the improved lightweight MobileNetv2 network and dilated separable convolution are integrated into the original DeeplabV3+network to improve the original backbone network Xception and atrous spatial pyramid pooling(ASPP)module,respectively,dramatically reducing the number of parameters in the network and accelerates the training and prediction speed of the model.Moreover,we introduce the parallel attention mechanism into the encoding and decoding stages.The attention to the crack regions can be enhanced from the aspects of both channel and spatial parts and significantly suppress the interference of various noises.Finally,we further improve the detection performance of the model for fine cracks by introducing a multi-scale features fusion module.Our research results are validated on the self-made dataset.The experiments show that our method is more accurate than other methods.Its intersection of union(IoU)and F1-score(F1)are increased to 77.96%and 87.57%,respectively.In addition,the number of parameters is only 4.10M,which is much smaller than the original network;also,the frames per second(FPS)is increased to 15 frames/s.The results prove that the proposed method fits well the requirements of rapid and accurate detection of bridge cracks and is superior to other methods.展开更多
In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units an...In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stifness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stifness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stifness fully decoupled 3T PM. Kinematic and stifness analyses show that the Jacobian matrix is a diagonal matrix, and the stifness is obviously higher than that of the coupling mechanisms, which verifes the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.展开更多
In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators...In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method.展开更多
The current parallel ankle rehabilitation robot(ARR)suffers from the problem of difficult real-time alignment of the human-robot joint center of rotation,which may lead to secondary injuries to the patient.This study ...The current parallel ankle rehabilitation robot(ARR)suffers from the problem of difficult real-time alignment of the human-robot joint center of rotation,which may lead to secondary injuries to the patient.This study investigates type synthesis of a parallel self-alignment ankle rehabilitation robot(PSAARR)based on the kinematic characteristics of ankle joint rotation center drift from the perspective of introducing"suitable passive degrees of freedom(DOF)"with a suitable number and form.First,the self-alignment principle of parallel ARR was proposed by deriving conditions for transforming a human-robot closed chain(HRCC)formed by an ARR and human body into a kinematic suitable constrained system and introducing conditions of"decoupled"and"less limb".Second,the relationship between the self-alignment principle and actuation wrenches(twists)of PSAARR was analyzed with the velocity Jacobian matrix as a"bridge".Subsequently,the type synthesis conditions of PSAARR were proposed.Third,a PSAARR synthesis method was proposed based on the screw theory and type of PSAARR synthesis conducted.Finally,an HRCC kinematic model was established to verify the self-alignment capability of the PSAARR.In this study,93 types of PSAARR limb structures were synthesized and the self-alignment capability of a human-robot joint axis was verified through kinematic analysis,which provides a theoretical basis for the design of such an ARR.展开更多
Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The ...Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.展开更多
The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and recip...The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and reciprocal product of the screw, the equation of the motor moment is obtained. Through the transformation of dynamics model, the configuration space method of the dynamics equation and the corresponding coefficients are presented. Finally, the result of an example shows that the inertia moment and the gravity play a more important role than the coriolis and centrifugal moment, and the former is ten times of the latter in the magnitude. So, the latter can be neglected only when the velocity of mechanism is very slow.展开更多
One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three ...One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three orthogonal distributional branch-chains, and all movable pairs are rotational joints. The movable platform of the mechanism has x, y, z translational decoupling directions. Furthermore, in order to verify the mechanism's decoupling characteristics, the mechanism's kinematics analysis is solved, and the mechanism's direct/inverse kinematics model, input/output velocities and accelerations are deduced, which confirm its decoupling movement characteristics. Finally, one kind of mechanism link decomposed-integrated approach is adopted, and the mechanism's dynamics model is completed with the Lagrange method, which also proves its decoupling force characteristics. All of these works provide significant theory for the further study of the mechanism's control strategy, design, path planning etc.展开更多
Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific p...Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific parallel press mechanisms. However, the type synthesis and evaluation of parallel press mechanisms is seldom studied, especially for the four degrees of freedom(DOF) press mechanisms. The type synthesis of 4-DOF parallel press mechanisms is carried out based on the generalized function(GF) set theory. Five design criteria of 4-DOF parallel press mechanisms are firstly proposed. The general procedure of type synthesis of parallel press mechanisms is obtained, which includes number synthesis, symmetrical synthesis of constraint GF sets, decomposition of motion GF sets and design of limbs. Nine combinations of constraint GF sets of 4-DOF parallel press mechanisms, ten combinations of GF sets of active limbs, and eleven combinations of GF sets of passive limbs are synthesized. Thirty-eight kinds of press mechanisms are presented and then different structures of kinematic limbs are designed. Finally, the geometrical constraint complexity(GCC), kinematic pair complexity(KPC), and type complexity(TC) are proposed to evaluate the press types and the optimal press type is achieved. The general methodologies of type synthesis and evaluation for parallel press mechanism are suggested.展开更多
According to the structure character of the passive sub-chain of the 3TPS-TPparallel mechanism, the kinematic constraint equations of the movable platform are established,based on which the closed-form inverse kinemat...According to the structure character of the passive sub-chain of the 3TPS-TPparallel mechanism, the kinematic constraint equations of the movable platform are established,based on which the closed-form inverse kinematics formula of the parallel mechanism are presented.Through parting the spherical joints of the active sub-chains and using the force and momentequilibrium of both the active sub-chains and passive sub-chain, the constraint forces acting on theparted joints are determined. Subsequently, the analytic expressions of the actuator driving forcesare derived by means of the force equilibrium of the upper links of active sub-chains.展开更多
The existence of coupling makes the parallel mechanism possess some special advantages over the serial mechanism, while it is just the coupling that brings about the parallel mechanism some limitations, such as comple...The existence of coupling makes the parallel mechanism possess some special advantages over the serial mechanism, while it is just the coupling that brings about the parallel mechanism some limitations, such as complex workspace, high nonlinear relationship between input and output, difficulties in static and dynamic analysis, and the development of control system, which restricts its application fields. The decoupled parallel mechanism is currently one of the research focuses of the mechanism fields, while the study on the different characteristics between the deeoupled and coupled parallel mechanisms has not been reported. Therefore, this paper performs the systematic comparative analysis of the 3-RPUR and the 3-CPR parallel mechanisms. The features of the two mechanisms are described and their movement forms are analyzed with screw theory. The inverse and forward displacement solutions are solved and the Jacobian matrices are obtained. According to the Jacobian matrices and by using the theory of physical model of the solution space, the workspace, dexterity, velocity, payload capability, and stiffness of the mechanisms are analyzed with plotting the indices atlases. The research results prove that the effects of the coupling on the parallel mechanism are double-side, and then the adoption of the decoupled parallel mechanism should be determined by the requirements of the concrete application situation. The contents of this paper should be useful for the type synthesis and practical application of the parallel mechanism.展开更多
The application of the parallel mechanism is still limited in the humanoid robot fields, and the existing parallel humanoid robot joint has not yet been reflected the characteristics of the parallel mechanism complete...The application of the parallel mechanism is still limited in the humanoid robot fields, and the existing parallel humanoid robot joint has not yet been reflected the characteristics of the parallel mechanism completely, also failed to solve the problem, such as small workspace, effectively. From the structural and functional bionic point of view, a three degrees of freedom(DOFs) spherical parallel mechanism for the shoulder complex of the humanoid robot is presented. According to the structure and kinetic characteristics analysis of the human shoulder complex, 3-PSS/S(P for prismatic pair, S for spherical pair) is chosen as the original configuration for the shouder complex. Using genetic algorithm, the optimization of the 3-PSS/S spherical parallel mechanism is performed, and the orientation workspace of the prototype mechanism is enlarged obviously. Combining the practical structure characteristics of the human shouder complex, an offset output mode, which means the output rod of the mechanism turn to any direction at the point a certain distance from the rotation center of the mechanism, is put forward, which provide possibility for the consistent of the workspace of the mechanism and the actual motion space of the human body shoulder joint. The relationship of the attitude angles between different coordinate system is derived, which establishs the foundation for the motion descriptions under different conditions and control development. The 3-PSS/S spherical parallel mechanism is proposed for the shoulder complex, and the consistence of the workspace of the mechanism and the human shoulder complex is realized by the stuctural parameter optimization and the offset output design.展开更多
Many methods are proposed to deal with the type synthesis of parallel kinematic mechanisms(PKMs), but most of them are less intuitive to some extent. Thus, to propose a concise and intuitive type synthesis method fo...Many methods are proposed to deal with the type synthesis of parallel kinematic mechanisms(PKMs), but most of them are less intuitive to some extent. Thus, to propose a concise and intuitive type synthesis method for engineering application is a very challenging issue, which should be further studied in the field. Grassmann line geometry, which can investigate the dimensions of spatial line-clusters in a concise way, is taken as the mathematic foundation. Atlas method is introduced to visually describe the degrees of freedom(DOFs) and constraints of a mechanism, and the dual rule is brought in to realize the mutual conversion of the freedom-space and constraint-space. Consequently, a systematic method based on Grassmann line geometry and Atlas method is generated and the entire type synthesis process is presented. Three type 4-DOF PKMs, i.e., 1T3R, 2T2R and 3T1R(T: translational DOF; R: rotational DOF), are classified according to the different combinations of the translational DOFs and rotational DOFs. The type synthesis of 4-DOF PKMs is carried out and the possible configurations are thoroughly investigated. Some new PKMs with useful functions are generated during this procedure. The type synthesis method based on Grassmann line geometry and Atlas method is intuitive and concise, and can reduce the complexity of the PKMs' type synthesis. Moreover, this method can provide theoretical guidance for other PKMs' type synthesis and engineering application. A novel type synthesis method is proposed, which solves the existing methods' problems in terms of complicated, not intuitive and unsuitable for practical application.展开更多
Direct kinematics with analytic solutions is critical to the real-time control of parallel mechanisms.Therefore,the type synthesis of a mechanism having explicit form of forward kinematics has become a topic of intere...Direct kinematics with analytic solutions is critical to the real-time control of parallel mechanisms.Therefore,the type synthesis of a mechanism having explicit form of forward kinematics has become a topic of interest.Based on this purpose,this paper deals with the type synthesis of 1T2R parallel mechanisms by investigating the topological structure coupling-reducing of the 3UPS&UP parallel mechanism.With the aid of the theory of mechanism topology,the analysis of the topological characteristics of the 3UPS&UP parallel mechanism is presented,which shows that there are highly coupled motions and constraints amongst the limbs of the mechanism.Three methods for structure coupling-reducing of the 3UPS&UP parallel mechanism are proposed,resulting in eight new types of 1T2R parallel mechanisms with one or zero coupling degree.One obtained parallel mechanism is taken as an example to demonstrate that a mechanism with zero coupling degree has an explicit form for forward kinematics.The process of type synthesis is in the order of permutation and combination;therefore,there are no omissions.This method is also appli cable to other configurations,and novel topological structures having simple forward kinematics can be obtained from an original mechanism via this method.展开更多
It is desired to require a walking robot for the elderly and the disabled to have large capacity,high stiffness,stability,etc.However,the existing walking robots cannot achieve these requirements because of the weight...It is desired to require a walking robot for the elderly and the disabled to have large capacity,high stiffness,stability,etc.However,the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function.Therefore,Improvement of enhancing capacity and functions of the walking robot is an important research issue.According to walking requirements and combining modularization and reconfigurable ideas,a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed.The proposed robot can be used for both a biped and a quadruped walking robot.The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized.The results show that performance of the walking robot is optimal when the circumradius R,r of the upper and lower platform of leg mechanism are 161.7 mm,57.7 mm,respectively.Based on the optimal results,the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory,and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed,which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process.Besides laying a theoretical foundation for development of the prototype,the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.展开更多
It is widely used for the rotational parallel mechanism in the field of spatial orientation. While owing to the existence of coupling, the forward kinematic solution and the control of the general rotational parallel ...It is widely used for the rotational parallel mechanism in the field of spatial orientation. While owing to the existence of coupling, the forward kinematic solution and the control of the general rotational parallel mechanism are especially difficult. If decoupling can be realized, the kinematic analysis of the mechanism will be very simple. Presently, the research of the parallel mechanism is focused on the inverse solution and structure optimization, and there is a lack of rotation decoupled parallel mechanisms (DPMs). So this paper proposes a family of 2 degree of freedom (DOF) rotational DPMs based on the four-bar linkage mechanism, and performs a characteristic analysis. This family of DPMs is composed of a moving platform, a fixed base and three limbs. Taking U_RRU SPU DPM as an example, the motion feature of this DPM is analyzed with the constraint screw method, and its mobility is calculated by using the Modified Kutzbach-Grtibler criterion. The inverse and forward displacement problems of the proposed parallel mechanism are solved. The decoupled feature of the proposed parallel mechanism is validated by the deduction of the expression of the Jaeobian matrix. Three kinds of singularity conditions of this DPM are discussed, and the atlases of the output parameter concerning different geometric parameters are plotted with the theory of the physical model of the solution space. The proposition and characteristic analysis of the novel rotational DPMs in this paper should be useful for further research and application of the parallel mechanisms.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos.51875495,U2037202)Hebei Provincial Science and Technology Project (Grant No.206Z1805G)。
文摘Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate the configuration stiffness of mechanisms during the mechanism design stage.It is a challenge to select appropriate 2R1T PMs with excellent stiffness performance during the design stage.Considering the operational status of 2R1T PMs,the bending and torsional stiffness are considered as indices to evaluate PMs'configuration stiffness.Subsequently,a specific method is proposed to calculate these stiffness indices.Initially,the various types of structural and driving stiffness for each branch are assessed and their specific values defined.Subsequently,a rigid-flexible coupled force model for the over-constrained 2R1T PM is established,and the proposed evaluation method is used to analyze the configuration stiffness of the five 2R1T PMs in the entire workspace.Finally,the driving force and constraint force of each branch in the whole working space are calculated to further elucidate the stiffness evaluating results by using the proposed method above.The obtained results demonstrate that the bending and torsional stiffness of the 2RPU/UPR/RPR mechanism along the x and y-directions are larger than the other four mechanisms.
基金Supported by National Natural Science Foundation of China(Grant No.52075145)S&T Program of Hebei Province of China(Grant Nos.20281805Z,E2020103001)Central Government Guides Basic Research Projects of Local Science and Technology Development Funds of China(Grant No.206Z1801G).
文摘The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the human ankle to the UR model and proposes a novel three degrees of freedom(3-DOF)generalized spherical parallel mechanism for ankle rehabilitation.The parallel mechanism has two spherical centers corresponding to the rotation centers of tibiotalar and subtalar joints.Using screw theory,the mobility of the parallel mechanism,which meets the requirements of the human ankle,is analyzed.The inverse kinematics are presented,and singularities are identified based on the Jacobian matrix.The workspaces of the parallel mechanism are obtained through the search method and compared with the motion range of the human ankle,which shows that the parallel mechanism can meet the motion demand of ankle rehabilitation.Additionally,based on the motion-force transmissibility,the performance atlases are plotted in the parameter optimal design space,and the optimum parameter is obtained according to the demands of practical applications.The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and has excellent kinematic performance in its rehabilitation range,which provides a theoretical basis for the prototype design and experimental verification.
基金supported in part by the National Natural Science Foundation of China(No.51405237)。
文摘Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.
基金Supported by National Natural Science Foundation of China (Grant No.52275004)。
文摘Power-assisted upper-limb exoskeletons are primarily used to improve the handling efficiency and load capacity.However,kinematic mismatch between the kinematics and biological joints is a major problem in most existing exoskeletons,because it reduces the boosting effect and causes pain and long-term joint damage in humans.In this study,a shoulder augmentation exoskeleton was designed based on a parallel mechanism that solves the shoulder dislocation problem using the upper arm as a passive limb.Consequently,the human–machine synergy and wearability of the exoskeleton system were improved without increasing the volume and weight of the system.A parallel mechanism was used as the structural body of the shoulder joint exoskeleton,and its workspace,dexterity,and stiffness were analyzed.Additionally,an ergonomic model was developed using the principle of virtual work,and a case analysis was performed considering the lifting of heavy objects.The results show that the upper arm reduces the driving force requirement in coordinated motion,enhances the load capacity of the system,and achieves excellent assistance.
基金This work was supported by the High-Tech Industry Science and Technology Innovation Leading Plan Project of Hunan Provincial under Grant 2020GK2026,author B.Y,http://kjt.hunan.gov.cn/.
文摘Regular inspection of bridge cracks is crucial to bridge maintenance and repair.The traditional manual crack detection methods are timeconsuming,dangerous and subjective.At the same time,for the existing mainstream vision-based automatic crack detection algorithms,it is challenging to detect fine cracks and balance the detection accuracy and speed.Therefore,this paper proposes a new bridge crack segmentationmethod based on parallel attention mechanism and multi-scale features fusion on top of the DeeplabV3+network framework.First,the improved lightweight MobileNetv2 network and dilated separable convolution are integrated into the original DeeplabV3+network to improve the original backbone network Xception and atrous spatial pyramid pooling(ASPP)module,respectively,dramatically reducing the number of parameters in the network and accelerates the training and prediction speed of the model.Moreover,we introduce the parallel attention mechanism into the encoding and decoding stages.The attention to the crack regions can be enhanced from the aspects of both channel and spatial parts and significantly suppress the interference of various noises.Finally,we further improve the detection performance of the model for fine cracks by introducing a multi-scale features fusion module.Our research results are validated on the self-made dataset.The experiments show that our method is more accurate than other methods.Its intersection of union(IoU)and F1-score(F1)are increased to 77.96%and 87.57%,respectively.In addition,the number of parameters is only 4.10M,which is much smaller than the original network;also,the frames per second(FPS)is increased to 15 frames/s.The results prove that the proposed method fits well the requirements of rapid and accurate detection of bridge cracks and is superior to other methods.
基金Supported by National Natural Science Foundation of China(Grant No.52275032)Key Project of Hebei Provincial Natural Science Foundation of China(Grant No.E2022203077)Hebei Provincial Key Research and Development Plan of China(Grant No.202230808010057).
文摘In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stifness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stifness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stifness fully decoupled 3T PM. Kinematic and stifness analyses show that the Jacobian matrix is a diagonal matrix, and the stifness is obviously higher than that of the coupling mechanisms, which verifes the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.
基金the Vietnam National Foundation for Science and Technology Development(NAFOSTED)Vietnam under Grant No.(107.01-2019.311).
文摘In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method.
基金Supported by Key Scientific Research Platforms and Projects of Guangdong Regular Institutions of Higher Education of China(Grant No.2022KCXTD033)Guangdong Provincial Natural Science Foundation of China(Grant No.2023A1515012103)+1 种基金Guangdong Provincial Scientific Research Capacity Improvement Project of Key Developing Disciplines of China(Grant No.2021ZDJS084)National Natural Science Foundation of China(Grant No.52105009).
文摘The current parallel ankle rehabilitation robot(ARR)suffers from the problem of difficult real-time alignment of the human-robot joint center of rotation,which may lead to secondary injuries to the patient.This study investigates type synthesis of a parallel self-alignment ankle rehabilitation robot(PSAARR)based on the kinematic characteristics of ankle joint rotation center drift from the perspective of introducing"suitable passive degrees of freedom(DOF)"with a suitable number and form.First,the self-alignment principle of parallel ARR was proposed by deriving conditions for transforming a human-robot closed chain(HRCC)formed by an ARR and human body into a kinematic suitable constrained system and introducing conditions of"decoupled"and"less limb".Second,the relationship between the self-alignment principle and actuation wrenches(twists)of PSAARR was analyzed with the velocity Jacobian matrix as a"bridge".Subsequently,the type synthesis conditions of PSAARR were proposed.Third,a PSAARR synthesis method was proposed based on the screw theory and type of PSAARR synthesis conducted.Finally,an HRCC kinematic model was established to verify the self-alignment capability of the PSAARR.In this study,93 types of PSAARR limb structures were synthesized and the self-alignment capability of a human-robot joint axis was verified through kinematic analysis,which provides a theoretical basis for the design of such an ARR.
基金Supported by National Natural Science Foundation of China (Grant No.51975007)。
文摘Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.
基金Supported by the National Natural Science Foundation of China (50375071)the Jiangsu Province Key Lab on Digital Manufacture Project (HGDML-0604)~~
文摘The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and reciprocal product of the screw, the equation of the motor moment is obtained. Through the transformation of dynamics model, the configuration space method of the dynamics equation and the corresponding coefficients are presented. Finally, the result of an example shows that the inertia moment and the gravity play a more important role than the coriolis and centrifugal moment, and the former is ten times of the latter in the magnitude. So, the latter can be neglected only when the velocity of mechanism is very slow.
基金The National High Technology Research and Development Program of China(863Program)(No.2006AA040202)
文摘One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three orthogonal distributional branch-chains, and all movable pairs are rotational joints. The movable platform of the mechanism has x, y, z translational decoupling directions. Furthermore, in order to verify the mechanism's decoupling characteristics, the mechanism's kinematics analysis is solved, and the mechanism's direct/inverse kinematics model, input/output velocities and accelerations are deduced, which confirm its decoupling movement characteristics. Finally, one kind of mechanism link decomposed-integrated approach is adopted, and the mechanism's dynamics model is completed with the Lagrange method, which also proves its decoupling force characteristics. All of these works provide significant theory for the further study of the mechanism's control strategy, design, path planning etc.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035501)National Natural Science Foundation of China(Grant Nos.51421092,51335007,51323005,51205248)+1 种基金Shanghai Municipal Natural Science Foundation,China(Grant No.12ZR1445200)Doctoral Program Foundation of Ministry of Education of China(Grant No.20120073120060)
文摘Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific parallel press mechanisms. However, the type synthesis and evaluation of parallel press mechanisms is seldom studied, especially for the four degrees of freedom(DOF) press mechanisms. The type synthesis of 4-DOF parallel press mechanisms is carried out based on the generalized function(GF) set theory. Five design criteria of 4-DOF parallel press mechanisms are firstly proposed. The general procedure of type synthesis of parallel press mechanisms is obtained, which includes number synthesis, symmetrical synthesis of constraint GF sets, decomposition of motion GF sets and design of limbs. Nine combinations of constraint GF sets of 4-DOF parallel press mechanisms, ten combinations of GF sets of active limbs, and eleven combinations of GF sets of passive limbs are synthesized. Thirty-eight kinds of press mechanisms are presented and then different structures of kinematic limbs are designed. Finally, the geometrical constraint complexity(GCC), kinematic pair complexity(KPC), and type complexity(TC) are proposed to evaluate the press types and the optimal press type is achieved. The general methodologies of type synthesis and evaluation for parallel press mechanism are suggested.
基金This project is supported by National Natural Science Foundation of China (No.59775006)Postdoctoral Science Foundation of China (No.200031).
文摘According to the structure character of the passive sub-chain of the 3TPS-TPparallel mechanism, the kinematic constraint equations of the movable platform are established,based on which the closed-form inverse kinematics formula of the parallel mechanism are presented.Through parting the spherical joints of the active sub-chains and using the force and momentequilibrium of both the active sub-chains and passive sub-chain, the constraint forces acting on theparted joints are determined. Subsequently, the analytic expressions of the actuator driving forcesare derived by means of the force equilibrium of the upper links of active sub-chains.
基金supported by National Natural Science Foundation of China (Grant No. 50875227)
文摘The existence of coupling makes the parallel mechanism possess some special advantages over the serial mechanism, while it is just the coupling that brings about the parallel mechanism some limitations, such as complex workspace, high nonlinear relationship between input and output, difficulties in static and dynamic analysis, and the development of control system, which restricts its application fields. The decoupled parallel mechanism is currently one of the research focuses of the mechanism fields, while the study on the different characteristics between the deeoupled and coupled parallel mechanisms has not been reported. Therefore, this paper performs the systematic comparative analysis of the 3-RPUR and the 3-CPR parallel mechanisms. The features of the two mechanisms are described and their movement forms are analyzed with screw theory. The inverse and forward displacement solutions are solved and the Jacobian matrices are obtained. According to the Jacobian matrices and by using the theory of physical model of the solution space, the workspace, dexterity, velocity, payload capability, and stiffness of the mechanisms are analyzed with plotting the indices atlases. The research results prove that the effects of the coupling on the parallel mechanism are double-side, and then the adoption of the decoupled parallel mechanism should be determined by the requirements of the concrete application situation. The contents of this paper should be useful for the type synthesis and practical application of the parallel mechanism.
基金Supported by National Natural Science Foundation of China(Grant No.51275443)Key Project of Ministry of Education of China(Grant No.212012)+2 种基金Hebei Provincial Natural Science Foundation of China(Grant No.E2012203034)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111333120004)Research Fund for Outstanding Youth in Higher Education Institutions of Hebei Province,China(Grant No.Y2011114)
文摘The application of the parallel mechanism is still limited in the humanoid robot fields, and the existing parallel humanoid robot joint has not yet been reflected the characteristics of the parallel mechanism completely, also failed to solve the problem, such as small workspace, effectively. From the structural and functional bionic point of view, a three degrees of freedom(DOFs) spherical parallel mechanism for the shoulder complex of the humanoid robot is presented. According to the structure and kinetic characteristics analysis of the human shoulder complex, 3-PSS/S(P for prismatic pair, S for spherical pair) is chosen as the original configuration for the shouder complex. Using genetic algorithm, the optimization of the 3-PSS/S spherical parallel mechanism is performed, and the orientation workspace of the prototype mechanism is enlarged obviously. Combining the practical structure characteristics of the human shouder complex, an offset output mode, which means the output rod of the mechanism turn to any direction at the point a certain distance from the rotation center of the mechanism, is put forward, which provide possibility for the consistent of the workspace of the mechanism and the actual motion space of the human body shoulder joint. The relationship of the attitude angles between different coordinate system is derived, which establishs the foundation for the motion descriptions under different conditions and control development. The 3-PSS/S spherical parallel mechanism is proposed for the shoulder complex, and the consistence of the workspace of the mechanism and the human shoulder complex is realized by the stuctural parameter optimization and the offset output design.
基金supported by National Natural Science Foundation of China(Grant No.51135008)National Basic Research Program of China(973 Program,Grant No.2013CB035400)China Postdoctoral Science Foundation(Grant Nos.2012M520256,2013T60107)
文摘Many methods are proposed to deal with the type synthesis of parallel kinematic mechanisms(PKMs), but most of them are less intuitive to some extent. Thus, to propose a concise and intuitive type synthesis method for engineering application is a very challenging issue, which should be further studied in the field. Grassmann line geometry, which can investigate the dimensions of spatial line-clusters in a concise way, is taken as the mathematic foundation. Atlas method is introduced to visually describe the degrees of freedom(DOFs) and constraints of a mechanism, and the dual rule is brought in to realize the mutual conversion of the freedom-space and constraint-space. Consequently, a systematic method based on Grassmann line geometry and Atlas method is generated and the entire type synthesis process is presented. Three type 4-DOF PKMs, i.e., 1T3R, 2T2R and 3T1R(T: translational DOF; R: rotational DOF), are classified according to the different combinations of the translational DOFs and rotational DOFs. The type synthesis of 4-DOF PKMs is carried out and the possible configurations are thoroughly investigated. Some new PKMs with useful functions are generated during this procedure. The type synthesis method based on Grassmann line geometry and Atlas method is intuitive and concise, and can reduce the complexity of the PKMs' type synthesis. Moreover, this method can provide theoretical guidance for other PKMs' type synthesis and engineering application. A novel type synthesis method is proposed, which solves the existing methods' problems in terms of complicated, not intuitive and unsuitable for practical application.
基金Supported by National Key R&D program of China(Grant No.2017YFB1301800)National Natural Science Foundation of China(Grant No.51622508)National Defense Basic Scientific Research program of China(Grant No.JCKY2017203B066)
文摘Direct kinematics with analytic solutions is critical to the real-time control of parallel mechanisms.Therefore,the type synthesis of a mechanism having explicit form of forward kinematics has become a topic of interest.Based on this purpose,this paper deals with the type synthesis of 1T2R parallel mechanisms by investigating the topological structure coupling-reducing of the 3UPS&UP parallel mechanism.With the aid of the theory of mechanism topology,the analysis of the topological characteristics of the 3UPS&UP parallel mechanism is presented,which shows that there are highly coupled motions and constraints amongst the limbs of the mechanism.Three methods for structure coupling-reducing of the 3UPS&UP parallel mechanism are proposed,resulting in eight new types of 1T2R parallel mechanisms with one or zero coupling degree.One obtained parallel mechanism is taken as an example to demonstrate that a mechanism with zero coupling degree has an explicit form for forward kinematics.The process of type synthesis is in the order of permutation and combination;therefore,there are no omissions.This method is also appli cable to other configurations,and novel topological structures having simple forward kinematics can be obtained from an original mechanism via this method.
基金supported by National Natural Science Foundation of China(Grant No.61075099)
文摘It is desired to require a walking robot for the elderly and the disabled to have large capacity,high stiffness,stability,etc.However,the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function.Therefore,Improvement of enhancing capacity and functions of the walking robot is an important research issue.According to walking requirements and combining modularization and reconfigurable ideas,a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed.The proposed robot can be used for both a biped and a quadruped walking robot.The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized.The results show that performance of the walking robot is optimal when the circumradius R,r of the upper and lower platform of leg mechanism are 161.7 mm,57.7 mm,respectively.Based on the optimal results,the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory,and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed,which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process.Besides laying a theoretical foundation for development of the prototype,the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.
基金supported by National Natural Science Foundation of China (Grant No. 50875227)
文摘It is widely used for the rotational parallel mechanism in the field of spatial orientation. While owing to the existence of coupling, the forward kinematic solution and the control of the general rotational parallel mechanism are especially difficult. If decoupling can be realized, the kinematic analysis of the mechanism will be very simple. Presently, the research of the parallel mechanism is focused on the inverse solution and structure optimization, and there is a lack of rotation decoupled parallel mechanisms (DPMs). So this paper proposes a family of 2 degree of freedom (DOF) rotational DPMs based on the four-bar linkage mechanism, and performs a characteristic analysis. This family of DPMs is composed of a moving platform, a fixed base and three limbs. Taking U_RRU SPU DPM as an example, the motion feature of this DPM is analyzed with the constraint screw method, and its mobility is calculated by using the Modified Kutzbach-Grtibler criterion. The inverse and forward displacement problems of the proposed parallel mechanism are solved. The decoupled feature of the proposed parallel mechanism is validated by the deduction of the expression of the Jaeobian matrix. Three kinds of singularity conditions of this DPM are discussed, and the atlases of the output parameter concerning different geometric parameters are plotted with the theory of the physical model of the solution space. The proposition and characteristic analysis of the novel rotational DPMs in this paper should be useful for further research and application of the parallel mechanisms.