期刊文献+
共找到2,241篇文章
< 1 2 113 >
每页显示 20 50 100
Multi-Level Parallel Network for Brain Tumor Segmentation
1
作者 Juhong Tie Hui Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期741-757,共17页
Accurate automatic segmentation of gliomas in various sub-regions,including peritumoral edema,necrotic core,and enhancing and non-enhancing tumor core from 3D multimodal MRI images,is challenging because of its highly... Accurate automatic segmentation of gliomas in various sub-regions,including peritumoral edema,necrotic core,and enhancing and non-enhancing tumor core from 3D multimodal MRI images,is challenging because of its highly heterogeneous appearance and shape.Deep convolution neural networks(CNNs)have recently improved glioma segmentation performance.However,extensive down-sampling such as pooling or stridden convolution in CNNs significantly decreases the initial image resolution,resulting in the loss of accurate spatial and object parts information,especially information on the small sub-region tumors,affecting segmentation performance.Hence,this paper proposes a novel multi-level parallel network comprising three different level parallel subnetworks to fully use low-level,mid-level,and high-level information and improve the performance of brain tumor segmentation.We also introduce the Combo loss function to address input class imbalance and false positives and negatives imbalance in deep learning.The proposed method is trained and validated on the BraTS 2020 training and validation dataset.On the validation dataset,ourmethod achieved a mean Dice score of 0.907,0.830,and 0.787 for the whole tumor,tumor core,and enhancing tumor core,respectively.Compared with state-of-the-art methods,the multi-level parallel network has achieved competitive results on the validation dataset. 展开更多
关键词 Convolution neural network brain tumor segmentation parallel network
下载PDF
Energy-efficient task allocation for reliable parallel computation of cluster-based wireless sensor network in edge computing
2
作者 Jiabao Wen Jiachen Yang +2 位作者 Tianying Wang Yang Li Zhihan Lv 《Digital Communications and Networks》 SCIE CSCD 2023年第2期473-482,共10页
To efficiently complete a complex computation task,the complex task should be decomposed into subcomputation tasks that run parallel in edge computing.Wireless Sensor Network(WSN)is a typical application of parallel c... To efficiently complete a complex computation task,the complex task should be decomposed into subcomputation tasks that run parallel in edge computing.Wireless Sensor Network(WSN)is a typical application of parallel computation.To achieve highly reliable parallel computation for wireless sensor network,the network's lifetime needs to be extended.Therefore,a proper task allocation strategy is needed to reduce the energy consumption and balance the load of the network.This paper proposes a task model and a cluster-based WSN model in edge computing.In our model,different tasks require different types of resources and different sensors provide different types of resources,so our model is heterogeneous,which makes the model more practical.Then we propose a task allocation algorithm that combines the Genetic Algorithm(GA)and the Ant Colony Optimization(ACO)algorithm.The algorithm concentrates on energy conservation and load balancing so that the lifetime of the network can be extended.The experimental result shows the algorithm's effectiveness and advantages in energy conservation and load balancing. 展开更多
关键词 Wireless sensor network parallel computation Task allocation Genetic algorithm Ant colony optimization algorithm ENERGY-EFFICIENT Load balancing
下载PDF
Design of ANN Based Non-Linear Network Using Interconnection of Parallel Processor
3
作者 Anjani Kumar Singha Swaleha Zubair +3 位作者 Areej Malibari Nitish Pathak Shabana Urooj Neelam Sharma 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3491-3508,共18页
Suspicious mass traffic constantly evolves,making network behaviour tracing and structure more complex.Neural networks yield promising results by considering a sufficient number of processing elements with strong inte... Suspicious mass traffic constantly evolves,making network behaviour tracing and structure more complex.Neural networks yield promising results by considering a sufficient number of processing elements with strong interconnections between them.They offer efficient computational Hopfield neural networks models and optimization constraints used by undergoing a good amount of parallelism to yield optimal results.Artificial neural network(ANN)offers optimal solutions in classifying and clustering the various reels of data,and the results obtained purely depend on identifying a problem.In this research work,the design of optimized applications is presented in an organized manner.In addition,this research work examines theoretical approaches to achieving optimized results using ANN.It mainly focuses on designing rules.The optimizing design approach of neural networks analyzes the internal process of the neural networks.Practices in developing the network are based on the interconnections among the hidden nodes and their learning parameters.The methodology is proven best for nonlinear resource allocation problems with a suitable design and complex issues.The ANN proposed here considers more or less 46k nodes hidden inside 49 million connections employed on full-fledged parallel processors.The proposed ANN offered optimal results in real-world application problems,and the results were obtained using MATLAB. 展开更多
关键词 Artificial neural network(ANN) MULTIPROCESSOR hidden node nonlinear optimization parallel processing
下载PDF
Research on Grid Planning of Dual Power Distribution Network Based on Parallel Ant Colony Optimization Algorithm
4
作者 Shuaixiang Wang 《Journal of Electronic Research and Application》 2023年第1期32-41,共10页
A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the s... A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement. 展开更多
关键词 parallel ant colony optimization algorithm Dual power sources Distribution network Grid planning
下载PDF
Towards efficient deep neural network training by FPGA-based batch-level parallelism 被引量:4
5
作者 Cheng Luo Man-Kit Sit +3 位作者 Hongxiang Fan Shuanglong Liu Wayne Luk Ce Guo 《Journal of Semiconductors》 EI CAS CSCD 2020年第2期51-62,共12页
Training deep neural networks(DNNs)requires a significant amount of time and resources to obtain acceptable results,which severely limits its deployment in resource-limited platforms.This paper proposes DarkFPGA,a nov... Training deep neural networks(DNNs)requires a significant amount of time and resources to obtain acceptable results,which severely limits its deployment in resource-limited platforms.This paper proposes DarkFPGA,a novel customizable framework to efficiently accelerate the entire DNN training on a single FPGA platform.First,we explore batch-level parallelism to enable efficient FPGA-based DNN training.Second,we devise a novel hardware architecture optimised by a batch-oriented data pattern and tiling techniques to effectively exploit parallelism.Moreover,an analytical model is developed to determine the optimal design parameters for the DarkFPGA accelerator with respect to a specific network specification and FPGA resource constraints.Our results show that the accelerator is able to perform about 10 times faster than CPU training and about a third of the energy consumption than GPU training using 8-bit integers for training VGG-like networks on the CIFAR dataset for the Maxeler MAX5 platform. 展开更多
关键词 deep neural network TRAINING FPGA batch-level parallelism
下载PDF
Parallel Neural Network-Based Motion Controller for Autonomous Underwater Vehicles 被引量:5
6
作者 甘永 王丽荣 +1 位作者 万磊 徐玉如 《China Ocean Engineering》 SCIE EI 2005年第3期485-496,共12页
A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and i... A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and it is different from normal adaptive neural network controller in structure. Owing to the introduction of the self-learning part, on-line learning can be performed without sample data in several sample periods, resulting in high learning speed of the controller and good control performance. The desired-state programmer is utilized to obtain better learning samples of the neural network to keep the stability of the controller. The developed controller is applied to the 4-degree of freedom control of the AUV “IUV- IV” and is successful on the simulation platform. The control performance is also compared with that of neural network controller with different structures such as normal adaptive neural network and different learning methods. Current effects and surge velocity control are also included to demonstrate the controller' s performance. It is shown that the PNNC has a great possibility to solve the problems in the control system design of underwater vehicles. 展开更多
关键词 neural network autonomous underwater vehicles (AUV) parallel neural network-based controller (PNNC real-time part self-learning part
下载PDF
Path Planning and Tracking for Vehicle Parallel Parking Based on Preview BP Neural Network PID Controller 被引量:11
7
作者 季学武 王健 +3 位作者 赵又群 刘亚辉 臧利国 李波 《Transactions of Tianjin University》 EI CAS 2015年第3期199-208,共10页
In order to diminish the impacts of extemal disturbance such as parking speed fluctuation and model un- certainty existing in steering kinematics, this paper presents a parallel path tracking method for vehicle based ... In order to diminish the impacts of extemal disturbance such as parking speed fluctuation and model un- certainty existing in steering kinematics, this paper presents a parallel path tracking method for vehicle based on pre- view back propagation (BP) neural network PID controller. The forward BP neural network can adjust the parameters of PID controller in real time. The preview time is optimized by considering path curvature, change in curvature and road boundaries. A fuzzy controller considering barriers and different road conditions is built to select the starting po- sition. In addition, a kind of path planning technology satisfying the requirement of obstacle avoidance is introduced. In order to solve the problem of discontinuous curvature, cubic B spline curve is used for curve fitting. The simulation results and real vehicle tests validate the effectiveness of the proposed path planning and tracking methods. 展开更多
关键词 parallel parking path tracking path planning BP neural network curve fitting
下载PDF
Adaptive control of parallel manipulators via fuzzy-neural network algorithm 被引量:3
8
作者 Dachang ZHU Yuefa FANG 《控制理论与应用(英文版)》 EI 2007年第3期295-300,共6页
This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric u... This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric uncertainties are eliminated. FNNA is used to handle model uncertainties and external disturbances. In the proposed control scheme, we consider modifying the weight of fuzzy rules and present these rules to a MIMO system of parallel manipulators with more than three degrees-of-freedom (DoF). The algorithm has the advantage of not requiring the inverse of the Jacobian matrix especially for the low DoF parallel manipulators. The validity of the control scheme is shown through numerical simulations of a 6-RPS parallel manipulator with three DoF. 展开更多
关键词 parallel manipulator Adaptive control Fuzzy neural network algorithm SIMULATION
下载PDF
Spatiotemporal Patterns of Road Network and Road Development Pri-ority in Three Parallel Rivers Region in Yunnan,China:An Evaluation Based on Modified Kernel Distance Estimate 被引量:7
9
作者 YING Lingxiao SHEN Zehao +3 位作者 CHEN Jiding FANG Rui CHEN Xueping JIANG Rui 《Chinese Geographical Science》 SCIE CSCD 2014年第1期39-49,共11页
Road network is a critical component of public infrastructure,and the supporting system of social and economic development.Based on a modified kernel density estimate(KDE)algorithm,this study evaluated the road servic... Road network is a critical component of public infrastructure,and the supporting system of social and economic development.Based on a modified kernel density estimate(KDE)algorithm,this study evaluated the road service capacity provided by a road network composed of multi-level roads(i.e.national,provincial,county and rural roads),by taking account of the differences of effect extent and intensity for roads of different levels.Summarized at town scale,the population burden and the annual rural economic income of unit road service capacity were used as the surrogates of social and economic demands for road service.This method was applied to the road network of the Three Parallel River Region,the northwestern Yunnan Province,China to evaluate the development of road network in this region.In results,the total road length of this region in 2005 was 3.70×104km,and the length ratio between national,provincial,county and rural roads was 1∶2∶8∶47.From 1989 to 2005,the regional road service capacity increased by 13.1%,of which the contributions from the national,provincial,county and rural roads were 11.1%,19.4%,22.6%,and 67.8%,respectively,revealing the effect of′All Village Accessible′policy of road development in the mountainous regions in the last decade.The spatial patterns of population burden and economic requirement of unit road service suggested that the areas farther away from the national and provincial roads have higher road development priority(RDP).Based on the modified KDE model and the framework of RDP evaluation,this study provided a useful approach for developing an optimal plan of road development at regional scale. 展开更多
关键词 road network kernel density estimate(KDE) road service road development priority(RDP) Three parallel Rivers Region China
下载PDF
Neighborhood fusion-based hierarchical parallel feature pyramid network for object detection 被引量:3
10
作者 Mo Lingfei Hu Shuming 《Journal of Southeast University(English Edition)》 EI CAS 2020年第3期252-263,共12页
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid... In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy. 展开更多
关键词 computer vision deep convolutional neural network object detection hierarchical parallel feature pyramid network multi-scale feature fusion
下载PDF
WiFi CSI Gesture Recognition Based on Parallel LSTM-FCN Deep Space-Time Neural Network 被引量:2
11
作者 Zhiling Tang Qianqian Liu +2 位作者 Minjie Wu Wenjing Chen Jingwen Huang 《China Communications》 SCIE CSCD 2021年第3期205-215,共11页
In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases consi... In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases considerably because most gesture recognition systems cannot accommodate both user differentiation and gesture diversity.To overcome the limitations of existing methods,we designed a onedimensional parallel long short-term memory–fully convolutional network(LSTM–FCN)model to extract gesture features of different dimensions.LSTM can learn complex time dynamic information,whereas FCN can predict gestures efficiently by extracting the deep,abstract features of gestures in the spatial dimension.In the experiment,50 types of gestures of five users were collected and evaluated.The experimental results demonstrate the effectiveness of this system and robustness to various gestures and individual changes.Statistical analysis of the recognition results indicated that an average accuracy of approximately 98.9% was achieved. 展开更多
关键词 signal and information processing parallel LSTM-FCN neural network deep learning gesture recognition wireless channel state information
下载PDF
DIRECT DISPLACEMENT OF PARALLEL MECHANISM WITH WAVELET NETWORK 被引量:1
12
作者 CHEN Weishan CHEN Hua LIU Junkao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期69-72,共4页
A new method solution for the direct displacement of parallel mechanism, wavelet network method, is proposed. Comparing with the classical analytical and numerical methods, this method can be extended to any parallel ... A new method solution for the direct displacement of parallel mechanism, wavelet network method, is proposed. Comparing with the classical analytical and numerical methods, this method can be extended to any parallel mechanism with any selected degree of freedom and configuration. A wavelet network suiting to approach multi-input and multi-output system is constructed. The network is optimized by analyzing the sparseness of input data and selecting the fitting wavelets by orthogonalization method according to the output data. Then it is applied to solve the direct displace- ment of a general six-degree-of-freedom parallel mechanism as a numerical example. For comparison purposes, a BP neural network is also used for this problem. Simulation results show that the wavelet network performs better than BP neural network. In addition, the wavelet network learns much faster than BP network. 展开更多
关键词 Direct displacement parallel mechanism Wavelet network
下载PDF
An SPN analysis method for parallel scheduling in Ad Hoc networks 被引量:1
13
作者 盛琳阳 徐文超 贾世楼 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第6期634-639,共6页
In this paper, a new analytic method for modeling and evaluating mobile ad hoc networks (MANET) is proposed. Petri nets technique is introduced into MANET and a packet-flow parallel scheduling scheme is presented usin... In this paper, a new analytic method for modeling and evaluating mobile ad hoc networks (MANET) is proposed. Petri nets technique is introduced into MANET and a packet-flow parallel scheduling scheme is presented using Stochastic Petri Nets (SPN). The flowing of tokens is used in graphics mode to characterize dynamical features of sharing a single wireless channel. Through SPN reachability analysis and isomorphic continuous time Markov process equations, some network parameters, such as channel efficiency, one-hop transmission delay etc., can be obtained. Compared with conventional performance evaluation methods, the above parameters are mathematical expressions instead of test results from a simulator. 展开更多
关键词 mobile Ad Hoc network parallel scheduling stochastic petri nets performance evaluation
下载PDF
Inverse Control of Cable-driven Parallel Mechanism Using Type-2 Fuzzy Neural Network 被引量:9
14
作者 LI Cheng-Dong YI Jian-Qiang YU Yi ZHAO Dong-Bin 《自动化学报》 EI CSCD 北大核心 2010年第3期459-464,共6页
关键词 机器人 数学模型 最小二乘法 动力学
下载PDF
NEURAL NETWORK TRAINING WITH PARALLEL PARTICLE SWARM OPTIMIZER
15
作者 覃征 刘宇 王昱 《Journal of Pharmaceutical Analysis》 SCIE CAS 2006年第2期109-112,共4页
Objective To reduce the execution time of neural network training. Methods Parallel particle swarm optimization algorithm based on master-slave model is proposed to train radial basis function neural networks, which i... Objective To reduce the execution time of neural network training. Methods Parallel particle swarm optimization algorithm based on master-slave model is proposed to train radial basis function neural networks, which is implemented on a cluster using MPI libraries for inter-process communication. Results High speed-up factor is achieved and execution time is reduced greatly. On the other hand, the resulting neural network has good classification accuracy not only on training sets but also on test sets. Conclusion Since the fitness evaluation is intensive, parallel particle swarm optimization shows great advantages to speed up neural network training. 展开更多
关键词 parallel computation neural network particle swarm optimization CLUSTER
下载PDF
Multilayer Hex-Cells: A New Class of Hex-Cell Interconnection Networks for Massively Parallel Systems
16
作者 Mohammad Qatawneh 《International Journal of Communications, Network and System Sciences》 2011年第11期704-708,共5页
Scalability is an important issue in the design of interconnection networks for massively parallel systems. In this paper a scalable class of interconnection network of Hex-Cell for massively parallel systems is intro... Scalability is an important issue in the design of interconnection networks for massively parallel systems. In this paper a scalable class of interconnection network of Hex-Cell for massively parallel systems is introduced. It is called Multilayer Hex-Cell (MLH). A node addressing scheme and routing algorithm are also presented and discussed. An interesting feature of the proposed MLH is that it maintains a constant network degree regardless of the increase in the network size degree which facilitates modularity in building blocks of scalable systems. The new addressing node scheme makes the proposed routing algorithm simple and efficient in terms of that it needs a minimum number of calculations to reach the destination node. Moreover, the diameter of the proposed MLH is less than Hex-Cell network. 展开更多
关键词 MULTILAYER Hex-Cell INTERCONNECTION network parallel System
下载PDF
A Coupled Transiently Chaotic Neural Network Approach for Identical Parallel Machine Scheduling 被引量:2
17
作者 YU Ai-Qing GU Xing-Sheng 《自动化学报》 EI CSCD 北大核心 2008年第6期697-701,共5页
在相同机器上安排工作是经常在各种各样的生产系统遇到的一种状况。在这份报纸,一新联合了短暂地混乱的神经网络(CTCNN ) 被提出解决相同平行机器安排。这个问题的一个混合整数编程模型被介绍一个排列矩阵表达式转变成 CTCNN 计算体系... 在相同机器上安排工作是经常在各种各样的生产系统遇到的一种状况。在这份报纸,一新联合了短暂地混乱的神经网络(CTCNN ) 被提出解决相同平行机器安排。这个问题的一个混合整数编程模型被介绍一个排列矩阵表达式转变成 CTCNN 计算体系结构。新计算精力功能被建议除所有限制以外表示目的。特别地,在精力功能在惩罚术语之中存在的折衷问题被使用变化时间的惩罚参数克服。最后,结果与 100 个随机的起始的条件在 3 个不同规模问题上测试了证明网络收敛并且能在合理时间解决这些问题。 展开更多
关键词 机械设计 智能化系统 人工神经网络 混沌系统
下载PDF
Designing and optimizing a parallel neural network model for predicting the solubility of diosgenin in n-alkanols
18
作者 Huichao Lv Dayong Tian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期288-294,共7页
Accurate estimation of the solubility of a chemical compound is an important issue for many industrial proce sses.To overcome the defects of some thermodynamic models and simple correlations,a parallel neural network(... Accurate estimation of the solubility of a chemical compound is an important issue for many industrial proce sses.To overcome the defects of some thermodynamic models and simple correlations,a parallel neural network(PNN) model was conceived and optimized to predict the solubility of diosgenin in seven n-alkanols(C_(1)-C_(7)).The linear regression analysis of the parity plots indicates that the PNN model can give more accurate descriptions of the solubility of diosgenin than the ordinary neural network(ONN) model.The comparison of the average root mean square deviation(RMSD) shows that the suggested model has a slight advantage over the thermodynamic NRTL model in terms of the calculating precision.Moreover,the PNN model can reflect the effects of the temperature and the chain length of the alcohol solvent on the solution behavior of diosgenin correctly and can estimate its solubility in the n-alkanols with more carbon atoms. 展开更多
关键词 SOLUBILITY DIOSGENIN parallel neural network model NRTL model
下载PDF
Parallel-Transmission: A New Usage of Multi-Radio Diversity in Wireless Mesh Network
19
作者 Yun HU Shoubao YANG +1 位作者 Qi ZHANG Peng ZHANG 《International Journal of Communications, Network and System Sciences》 2009年第1期51-57,共7页
To fully utilize the diversity of multi-radio, a new parallel transmission method for wireless mesh network is proposed. Compared with conventional packet transmission which follows “one flow on one radio”, it uses ... To fully utilize the diversity of multi-radio, a new parallel transmission method for wireless mesh network is proposed. Compared with conventional packet transmission which follows “one flow on one radio”, it uses the radio diversity to transmit the packets on different radios simultaneously. Three components are presented to achieve parallel-transmission, which are control module, selection module and schedule module. A localized selecting algorithm selects the right radios based on the quality of wireless links. Two kinds of distributed scheduling algorithms are implemented to transmit packets on the selected radios. Finally, a parallel-adaptive routing metric is presented. Simulation results by NS2 show that this parallel-transmission scheme could enhance the average throughput of network by more than 10%. 展开更多
关键词 Wireless Mesh network Radio DIVERSITY parallel TRANSMISSION Scheduling Algorithm
下载PDF
A Highly Compatible Circular-Shifting Network for Partially Parallel QC-LDPC Decoder
20
作者 Yanzhi Wang Zhenzhi Wu +2 位作者 Peipei Liu Ning Guan Hua Wang 《International Journal of Communications, Network and System Sciences》 2017年第5期24-34,共11页
The conventional methodology for designing QC-LDPC decoders is applied for fixed configurations used in wireless communication standards, and the supported largest expansion factor Z (the parallelism of the layered de... The conventional methodology for designing QC-LDPC decoders is applied for fixed configurations used in wireless communication standards, and the supported largest expansion factor Z (the parallelism of the layered decoding) is a fixed number. In this paper, we study the circular-shifting network for decoding LDPC codes with arbitrary Z factor, especially for decoding large Z (Z P) codes, where P is the decoder parallelism. By buffering the P-length slices from the memory, and assembling the shifted slices in a fixed routine, the P-parallelism shift network can process Z-parallelism circular-shifting tasks. The implementation results show that the proposed network for arbitrary sized data shifting consumes only one times of additional resource cost compared to the traditional solution for only maximum P sized data shifting, and achieves significant saving on area and routing complexity. 展开更多
关键词 PARTIALLY parallel Layered Decoding Circular-Shifting network QC-LDPC Decoder Arbitrary Expansion Factor
下载PDF
上一页 1 2 113 下一页 到第
使用帮助 返回顶部