期刊文献+
共找到443篇文章
< 1 2 23 >
每页显示 20 50 100
Parameters matching and optimization of parallel hybrid electric vehicle powertrain 被引量:7
1
作者 陈勇 Chen Xiaokai Lin Yi 《High Technology Letters》 EI CAS 2010年第1期34-38,共5页
Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driv... Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driveline gear ratio and battery parameters are determined. And then a two-level optimization problem is formulated based on analytical target cascading (ATC). At the system level, the optimization of the whole vehicle fuel economy is carried out, while the tractive performance is defined as the constraints. The optimized parameters are cascaded to the subsystem as the optimization targets. At the subsystem level, the final drive and transmission design are optimized to make the ratios as close to the targets as possible. The optimization result shows that the fuel economy had improved significantly, while the tractive performance maintains the former level. 展开更多
关键词 parallel hybrid electric vehicle (PHEV) parameters matching OPTIMIZATION analytical target cascading (ATC) POWERTRAIN
下载PDF
OPTIMAL TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLE WITH AUTOMATIC MECHANICAL TRANSMISSION 被引量:12
2
作者 GU Yanchun YIN Chengliang ZHANG Jianwu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期16-20,共5页
In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gears... In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously. 展开更多
关键词 parallel hybrid electric vehicle (PHEV) Automatic mechanical transmission (AMT) Driving smoothness Clutch abrasion Optimal control Fuzzy logic control
下载PDF
An optimal energy management development for various configuration of plug-in and hybrid electric vehicle 被引量:8
3
作者 Morteza Montazeri-Gh Mehdi Mahmoodi-K 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1737-1747,共11页
Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the mai... Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions. 展开更多
关键词 plug-in and hybrid electric vehicle energy management CONFIGURATION genetic fuzzy controller fuel consumption EMISSION
下载PDF
Simulation research of energy management strategy for dual mode plug-in hybrid electrical vehicles 被引量:1
4
作者 李训明 liu hui +3 位作者 xin hui-bin yan zheng-jun zhang zhi-peng liu bei 《Journal of Chongqing University》 CAS 2017年第2期59-71,共13页
In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is d... In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is divided into power mode and economy mode. Energy management strategy designing methods of power mode and economy mode are proposed. Maximum velocity, acceleration performance and fuel consumption are simulated during the CS period in the AVL CRUISE simulation environment. The simulation results indicate that the maximum velocity and acceleration time of the power mode are better than those in the economy mode. Fuel consumption of the economy mode is better than that in the power mode. Fuel consumption of PHEV during the CS period is further improved by using the methods proposed in this paper, and this is meaningful for research and development of PHEV. 展开更多
关键词 plug-in hybrid electrical vehicle power mode eco mode energy management strategy model and simulation
下载PDF
Modeling and Control of Parallel Hybrid Electric Vehicle Using Sea-Lion Optimization
5
作者 J.Leon Bosco Raj M.Marsaline Beno 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1441-1454,共14页
This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an ele... This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an electric motor(EM),a battery and an internal combustion engine(ICE).The electric motor assists the engine when accelerating,driving longer highways or climbing hills.This enables the use of a smaller,more efficient engine.It also makes use of the concept of regenerative braking to maximize energy efficiency.In a Hybrid Electric Vehicle(HEV),energy dissipated while braking is utilized to charge the battery.The proportional integral controller was used in this paper to analyze engine,motor performance and the New European Driving Cycle(NEDC)was used in the vehicle driving test using Matlab/Simulink.The proportional integral controllers were designed to track the desired vehicle speed and manage the vehi-cle’s energyflow.The Sea Lion Optimization(SLnO)methods were created to reduce fuel consumption in a parallel hybrid electric vehicle and the results were obtained for the New European Driving Cycle. 展开更多
关键词 hybrid electric vehicle(HEV) proportional integral controller parallel HEV fuel efficiency new European driving cycle(NEDC) sea lion optimization(SLnO)
下载PDF
Analysis of Hybrid Rechargeable Energy Storage Systems in Series Plug-In Hybrid Electric Vehicles Based on Simulations
6
作者 Karel Fleurbaey Noshin Omar +2 位作者 Mohamed El Baghdadi Jean-Marc Timmermans Joeri Van Mierlo 《Energy and Power Engineering》 2014年第8期195-211,共17页
In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, ba... In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system. 展开更多
关键词 plug-In hybrid electric vehicle hybrid ENERGY Storage System HIGH ENERGY BATTERY HIGH Power BATTERY electrical DOUBLE-LAYER CAPACITOR Lithium-Ion CAPACITOR
下载PDF
The Future Trend of E-Mobility in Terms of Battery Electric Vehicles and Their Impact on Climate Change: A Case Study Applied in Hungary
7
作者 Mohamad Ali Saleh Saleh 《American Journal of Climate Change》 2024年第2期83-102,共20页
The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term ... The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs). 展开更多
关键词 Battery electric vehicles (BEVS) GASOLINE DIESEL hybrid electric vehicles (HEVs) plug-In hybrid vehicles (PHEVs) Climate Change Carbon Dioxide (CO2) Emissions
下载PDF
City-Bus-Route Demand-based Efficient Coupling Driving Control for Parallel Plug-in Hybrid Electric Bus 被引量:2
8
作者 Qin-Pu Wang Chao Yang +1 位作者 Ya-Hui Liu Yuan-Bo Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第3期168-178,共11页
Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions ... Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions are di cult to be obtained in advance. How to further explore its fuel?saving potential under the complicated city bus driving cycles through an e cient control strategy is still a hot research issue in both academic and engineering area. To realize an e cient coupling driving operation of the hybrid powertrain,a novel coupling driving control strategy for plug?in hybrid electric bus is presented. Combined with the typical feature of a city?bus?route,the fuzzy logic inference is employed to quantify the driving intention,and then to determine the coupling driving mode and the gear?shifting strategy. Considering the response deviation problem in the execution layer,an adaptive robust controller for electric machine is designed to respond to the transient torque demand,and instantaneously compensate the response delay and the engine torque fluctuation. The simulations and hard?in?loop tests with the actual data of two typical driving conditions from the real?world city?bus?route are carried out,and the results demonstrate that the pro?posed method could guarantee the hybrid powertrain to track the actual torque demand with 10.4% fuel economy improvement. The optimal fuel economy can be obtained through the optimal combination of working modes. The fuel economy of plug?in hybrid electric bus can be significantly improved by the proposed control scheme without loss of drivability. 展开更多
关键词 hybrid electric vehicle Single?shaft parallel electromechanical powertrain Coupling driving mode Adaptive robust control
下载PDF
Study on load performance of electric motor system used in hybrid electric vehicle
9
作者 李雯 Zhang Chengning +1 位作者 Wang Zhifu Gao Lei 《High Technology Letters》 EI CAS 2010年第1期63-66,共4页
The performance of the power assist, global optimization solved by dynamic programming (DP) method, Chery and Insight control strategies are analyzed using the mild parallel hybrid electric vehicle (PHEV) model ba... The performance of the power assist, global optimization solved by dynamic programming (DP) method, Chery and Insight control strategies are analyzed using the mild parallel hybrid electric vehicle (PHEV) model based on Insight structure. The influence of the four control strategies to the load power of the electric motor system used on parallel hybrid electric vehicle is studied. It is found that 80 percent of the motor load power points are under 1/5 of the electric peak power. The motor load power of the power assist control strategy is distributed in the widest range during generating operation, and the motor load power of the global optimization control strategy has the smallest one. 展开更多
关键词 parallel hybrid electric vehicle (PHEV) management strategy motor load power
下载PDF
Applications of Serial-Parallel Compensated Resonant Topology in Wireless Charger System Used in Electric Vehicles
10
作者 FU Yongsheng LEI Ming +1 位作者 GAO Leilei ZHOU Gang 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期15-22,共8页
There are lots of factors that can influence the wireless charging efficiency in practice, such as misalignment and air-gap difference, which can also change all the charging parameters. To figure out the relationship... There are lots of factors that can influence the wireless charging efficiency in practice, such as misalignment and air-gap difference, which can also change all the charging parameters. To figure out the relationship between those facts and system, this paper presents a serial-parallel compensated(SPC) topology for electric vehicle/plug-in hybrid electric vehicle(EV/PHEV) wireless charger and provides all the parameters changing with corresponding curves. An ANSYS model is built to extract the coupling coefficient of coils. When the system is works at constant output power, the scan frequency process can be applied to wireless power transfer(WPT) and get the resonant frequency. In this way, it could determine the best frequency for system to achieve zero voltage switching status and force the system to hit the maximum transmission efficiency. Then frequency tracking control(FTC) is used to obtain the highest system efficiency. In the paper, the designed system is rated at 500 W with 15 cm air-gap, the overall efficiency is 92%. At the end, the paper also gives the consideration on how to improve the system efficiency. 展开更多
关键词 wireless power transfer(WPT) zero voltage switching frequency tracking control(FTC) electric vehicle/plug-in hybrid electric vehicle(EV/PHEV)
下载PDF
Series-parallel Hybrid Vehicle Control Strategy Design and Optimization Using Real-valued Genetic Algorithm 被引量:14
11
作者 XIONG Weiwei YIN Chengliang ZHANG Yong ZHANG Jianlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期862-868,共7页
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been... Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles. 展开更多
关键词 series-parallel hybrid electric vehicle control strategy DESIGN OPTIMIZATION real-valued genetic algorithm
下载PDF
Plug-In Vehicle Acceptance and Probable Utilization Behaviour
12
作者 Patrícia Baptista Catarina Rolim Carla Silva 《Journal of Transportation Technologies》 2012年第1期67-74,共8页
This paper presents a study undertaken to understand the plug-in vehicle acceptance and probable utilization behaviour in terms of charging habits and utility factor (probability of driving in electrical mode). A surv... This paper presents a study undertaken to understand the plug-in vehicle acceptance and probable utilization behaviour in terms of charging habits and utility factor (probability of driving in electrical mode). A survey was designed to be answered via World Wide Web, throughout 3 months and only accessible to Portuguese inhabitants. The survey was composed by biographical and car ownership info, mobility patterns, awareness toward plug-in vehicle technologies, price premium and, finally, potential buyer’s attitudes regarding charging vehicles with electricity from the grid. An explanation of how each vehicle technology works in the case of a regular hybrid (HEV), a plug-in hybrid (PHEV) and a pure electric vehicle (EV) was provided. A total sample of 809 volunteers answered the survey, aged above 18 years old, 50% male and 50% female. The results allowed the estimation of the typical daily driving distance, the Utility Factor curve for plug-in hybrid future users, the charging preferences for future users of pure electric or plug-in hybrid vehicles and the necessary feebates to promote the market penetration of such technologies. Other correlations were also analyzed between driving patterns, type of owned car, price premium and the willingness to buy pure electric and plug-in hybrid vehicles. The main policy implications are that an increase of awareness campaigns is necessary if the government intends to support the plug-in electric vehicle technology widespread and a minimum of 5000 € investment per ton of avoided CO2 will be necessary in a year. 展开更多
关键词 PURE electric vehicleS plug-IN hybrid vehicleS UTILITY Factor Frequency Period of Recharging
下载PDF
Energy management strategy for a parallel hybrid electric vehicle equipped with a battery/ultra-capacitor hybrid energy storage system 被引量:6
13
作者 Jun-yi LIANG Jian-long ZHANG +2 位作者 Xi ZHANG Shi-fei YUAN Cheng-liang YIN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第8期535-553,共19页
To solve the low power density issue of hybrid electric vehicular batteries, a combination of batteries and ultracapacitors (UCs) could be a solution. The high power density feature of UCs can improve the performance ... To solve the low power density issue of hybrid electric vehicular batteries, a combination of batteries and ultracapacitors (UCs) could be a solution. The high power density feature of UCs can improve the performance of battery/UC hybrid energy storage systems (HESSs). This paper presents a parallel hybrid electric vehicle (HEV) equipped with an internal combus- tion engine and an HESS. An advanced energy management strategy (EMS), mainly based on fuzzy logic, is proposed to improve the fuel economy of the HEV and the endurance of the HESS. The EMS is capable of determining the ideal distribution of output power among the internal combustion engine, battery, and UC according to the propelling power or regenerative braking power of the vehicle. To validate the effectiveness of the EMS, numerical simulation and experimental validations are carried out. The results indicate that EMS can effectively control the power sources to work within their respective efficient areas. The battery load can be mitigated and prolonged battery life can be expected. The electrical energy consumption in the HESS is reduced by 3.91% compared with that in the battery only system. Fuel consumption of the HEV is reduced by 24.3% compared with that of the same class conventional vehicles under Economic Commission of Europe driving cycle. 展开更多
关键词 Energy management Fuel economy parallel hybrid electric vehicle hybrid energy storage system (HESS) Fuzzy logic
原文传递
Design and Strategy of Series-Parallel Hybrid System Based on BSFC 被引量:2
14
作者 Huien Gao Liang Chu +1 位作者 Jianhua Guo Dianbo Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期564-574,共11页
In this paper,a drive control strategy is developed based on the characteristics of series-parallel plug-in hybrid system.Energy management strategies in various modes are established with the basis on the minimum bra... In this paper,a drive control strategy is developed based on the characteristics of series-parallel plug-in hybrid system.Energy management strategies in various modes are established with the basis on the minimum brake specific fuel consumption(BSFC)curve of engine.The control strategy,which is based on rules and system efficiency,is adopted to determine the entry/exit mechanisms of various modes according to battery state of charge(SOC),required power and required speed.The vehicle test results verify that the proposed control strategy can improve vehicle economy efficiently and makes a good effect on engine control. 展开更多
关键词 SERIES-parallel plug-in hybrid electric vehicle(PHEV) based on rules based on system efficiency
下载PDF
Plug-in混合动力汽车能量管理策略优化设计 被引量:15
15
作者 张博 李君 +3 位作者 高莹 杨世春 杨成宏 陈华艳 《农业机械学报》 EI CAS CSCD 北大核心 2009年第9期20-25,共6页
应用PSAT前向仿真软件及矩阵分割全局优化算法,对并联式Plug-in混合动力汽车(PHEV)在不同电能消耗续驶里程(CDR)下的能量管理策略进行了优化设计研究。结果表明:PHEV电能消耗续驶里程越大,优化控制参数对整车经济性影响越小;小CDR优化... 应用PSAT前向仿真软件及矩阵分割全局优化算法,对并联式Plug-in混合动力汽车(PHEV)在不同电能消耗续驶里程(CDR)下的能量管理策略进行了优化设计研究。结果表明:PHEV电能消耗续驶里程越大,优化控制参数对整车经济性影响越小;小CDR优化控制参数的整车平均经济性能好于大CDR优化控制参数;利用优化设计得到的PHEV能量管理策略可以使整车平均等价油耗降至2.70 L/(100 km),相对于原型车经济性提高了近58%。 展开更多
关键词 plug-IN混合动力汽车 能量管理策略 优化 仿真
下载PDF
Plug-in混合动力汽车能量管理策略全局优化研究 被引量:33
16
作者 张博 李君 +2 位作者 高莹 杨成宏 尹雪峰 《中国机械工程》 EI CAS CSCD 北大核心 2010年第6期715-720,共6页
应用动态规划全局优化算法,针对并联式Plug-in混合动力汽车在不同行驶里程下的能量管理策略进行了全局优化研究。结果表明:车辆的行驶里程小于55km时应使用电动机为主的能量管理策略,当车辆的行驶里程大于55km时应使用发动机为主的能量... 应用动态规划全局优化算法,针对并联式Plug-in混合动力汽车在不同行驶里程下的能量管理策略进行了全局优化研究。结果表明:车辆的行驶里程小于55km时应使用电动机为主的能量管理策略,当车辆的行驶里程大于55km时应使用发动机为主的能量管理策略;在动态规划最优控制下,车辆行驶里程为55km时整车经济性能最佳,行驶里程小于110km时整车平均等价油耗为2.7L/100km,相对于原型车经济性提高了近58%。 展开更多
关键词 plug—in混合动力汽车 能量管理策略 动态规划 优化设计
下载PDF
Plug-In并联式混合动力汽车实时优化能量管理策略 被引量:16
17
作者 崔纳新 步刚 +2 位作者 吴剑 符晓玲 张承慧 《电工技术学报》 EI CSCD 北大核心 2011年第11期155-160,共6页
能量管理策略是混合动力汽车的核心技术之一,其品质直接影响车辆的动力性、经济性和排放性能。首先制定了基于确定性规则的Plug-In并联式混合动力汽车能量管理策略;然后,为了提高车辆的燃油经济性,设计了电池能量观测单元,并对等效燃油... 能量管理策略是混合动力汽车的核心技术之一,其品质直接影响车辆的动力性、经济性和排放性能。首先制定了基于确定性规则的Plug-In并联式混合动力汽车能量管理策略;然后,为了提高车辆的燃油经济性,设计了电池能量观测单元,并对等效燃油消耗最小策略进行改进,提出了适用于Plug-In混合动力汽车的实时优化能量管理策略。研究结果表明,该能量管理策略显著提高了Plug-In并联式混合动力汽车的燃油经济性。 展开更多
关键词 外接充电式混合动力汽车 能量管理策略 实时优化 燃油经济性
下载PDF
Plug-in混合动力汽车动力总成优化设计研究 被引量:11
18
作者 张博 李君 +2 位作者 杨世春 高莹 尹雪峰 《汽车工程》 EI CSCD 北大核心 2009年第7期592-596,共5页
应用PSAT前向仿真软件,建立了双离合器式并联PHEV仿真模型。在确定了PHEV整车性能约束条件并对动力总成主要部件进行了成本分析之后,对不同全电力续驶里程和动力电池类型的PHEV动力总成进行了优化。结果表明:动力电池设计容量对整车成... 应用PSAT前向仿真软件,建立了双离合器式并联PHEV仿真模型。在确定了PHEV整车性能约束条件并对动力总成主要部件进行了成本分析之后,对不同全电力续驶里程和动力电池类型的PHEV动力总成进行了优化。结果表明:动力电池设计容量对整车成本影响最大,而它主要取决于所要求的全电力续驶里程;随着所要求的全电力续驶里程的增大,所需电机最大输出功率升高,而发动机最大输出功率则降低。 展开更多
关键词 plug-IN混合动力汽车 动力总成 优化设计 PSAT仿真软件
下载PDF
Plug-in混合动力汽车动力系统参数匹配 被引量:11
19
作者 赵又群 李佳 《应用基础与工程科学学报》 EI CSCD 2011年第3期459-465,共7页
以并联型Plug-in混合动力电动汽车(PHEV)为研究对象,提出了其动力驱动系统参数匹配的原则和实施方法.采用该方法对某型轿车动力总成参数进行了匹配,使用电动汽车仿真软件ADVISOR对整车性能进行仿真计算.仿真结果表明:Plug-in混合动力轿... 以并联型Plug-in混合动力电动汽车(PHEV)为研究对象,提出了其动力驱动系统参数匹配的原则和实施方法.采用该方法对某型轿车动力总成参数进行了匹配,使用电动汽车仿真软件ADVISOR对整车性能进行仿真计算.仿真结果表明:Plug-in混合动力轿车动力性与原车相当,经济性与原车相比有很大提高,达到预期开发目标. 展开更多
关键词 plug-IN混合动力汽车 动力总成 参数匹配 仿真
下载PDF
Plug-in混合动力汽车动力系统参数设计成本效益分析 被引量:4
20
作者 吴为理 兰凤崇 +1 位作者 陈吉清 张爱国 《机械科学与技术》 CSCD 北大核心 2013年第3期383-387,共5页
基于成本效益分析,以年均使用成本和初始成本作为评价指标,建立插电式混合动力汽车(PHEV)动力系统设计分析模型,对PHEV动力系统纯电动续驶里程和能量储存装置参数的进行设计分析。以Prius为分析对象,结果显示当PHEV纯电动续驶里程等于... 基于成本效益分析,以年均使用成本和初始成本作为评价指标,建立插电式混合动力汽车(PHEV)动力系统设计分析模型,对PHEV动力系统纯电动续驶里程和能量储存装置参数的进行设计分析。以Prius为分析对象,结果显示当PHEV纯电动续驶里程等于汽车的日行驶里程时,节油量最大且年均成本最小,同时也得到了国内个人交通出行数据统计对PHEV设计的重要性。能量储存装置的容量、放电深度和功率对PHEV质量和初始成本均有较大影响,基于功率/能量比(RP/E)分析了能量储存装置参数对PHEV动力系统成本的影响。 展开更多
关键词 插电式混合动力汽车 动力系统 参数设计 成本效益分析
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部