Energy for space vehicles in low Earth orbit(LEO) is mainly generated by solar arrays, and the service time of the vehicles is controlled by the lifetime of these arrays, which depends mainly on the lifetime of the in...Energy for space vehicles in low Earth orbit(LEO) is mainly generated by solar arrays, and the service time of the vehicles is controlled by the lifetime of these arrays, which depends mainly on the lifetime of the interconnects. To increase the service life of LEO satellites, molybdenum/platinum/silver(Mo/Pt/Ag) laminated metal matrix composite(LMMC) interconnectors are widely used in place of Mo/Ag LMMC and Ag interconnectors in solar arrays. A 2D thermal-electrical-mechanical coupled axisymmetric model was established to simulate the behavior of the parallel gap resistance welding(PGRW) process for solar cells and Mo/Pt/Ag composite interconnectors using the commercial software ANSYS. The direct multicoupled PLANE223 element and the contact pair elements TARGE169 and CONTA172 were employed. A transitional meshing method was applied to solve the meshing problem due to the ultrathin(1 μm) intermediate Pt layer. A comparison of the analysis results with the experimental results revealed that the best parameters were 60 W, 60 ms, and 0.0138 MPa. The voltage and current predicted by the finite element method agreed well with the experimental results. This study contributes to a further understanding of the mechanism of PGRW and provides guidance for finite element simulation of the process of welding with an ultrathin interlayer.展开更多
This paper presents a novel scheme for enhancing resistance that utilizes an equivalent negative resistance. Adopting this novel scheme in the proposed current source could remarkably boost its output resistance witho...This paper presents a novel scheme for enhancing resistance that utilizes an equivalent negative resistance. Adopting this novel scheme in the proposed current source could remarkably boost its output resistance without requiring increased power supply. Simulation with 0.6μm CMOS process models shows that the output resistance of the novel current source can reach the order of 10^9Ω with a 1.04GHz bandwidth and only 10.6ppm/℃ in the range of -40~145℃.展开更多
The sensitivities of betavoltaic batteries and photovoltaic batteries to series and parallel resistance are studied.Based on the study,an electrode pattern design principle of GaAs betavoltaic batteries is proposed.Ga...The sensitivities of betavoltaic batteries and photovoltaic batteries to series and parallel resistance are studied.Based on the study,an electrode pattern design principle of GaAs betavoltaic batteries is proposed.GaAs PIN junctions with and without the proposed electrode pattern are fabricated and measured under the illumination of ^(63)Ni.Results show that the proposed electrode can reduce the backscattering and shadowing for the beta particles from ^(63)Ni to increase the GaAs betavoltaic battery short circuit currents effectively but has little impact on the fill factors and ideal factors.展开更多
基金supported by the National Key Research and Development Program of China(Nos. 2018YFB0703904 and 2017YFE0302600)。
文摘Energy for space vehicles in low Earth orbit(LEO) is mainly generated by solar arrays, and the service time of the vehicles is controlled by the lifetime of these arrays, which depends mainly on the lifetime of the interconnects. To increase the service life of LEO satellites, molybdenum/platinum/silver(Mo/Pt/Ag) laminated metal matrix composite(LMMC) interconnectors are widely used in place of Mo/Ag LMMC and Ag interconnectors in solar arrays. A 2D thermal-electrical-mechanical coupled axisymmetric model was established to simulate the behavior of the parallel gap resistance welding(PGRW) process for solar cells and Mo/Pt/Ag composite interconnectors using the commercial software ANSYS. The direct multicoupled PLANE223 element and the contact pair elements TARGE169 and CONTA172 were employed. A transitional meshing method was applied to solve the meshing problem due to the ultrathin(1 μm) intermediate Pt layer. A comparison of the analysis results with the experimental results revealed that the best parameters were 60 W, 60 ms, and 0.0138 MPa. The voltage and current predicted by the finite element method agreed well with the experimental results. This study contributes to a further understanding of the mechanism of PGRW and provides guidance for finite element simulation of the process of welding with an ultrathin interlayer.
文摘This paper presents a novel scheme for enhancing resistance that utilizes an equivalent negative resistance. Adopting this novel scheme in the proposed current source could remarkably boost its output resistance without requiring increased power supply. Simulation with 0.6μm CMOS process models shows that the output resistance of the novel current source can reach the order of 10^9Ω with a 1.04GHz bandwidth and only 10.6ppm/℃ in the range of -40~145℃.
基金Project supported by the National Natural Science Foundation of China(Nos.90923039 and 51025521)the 111 Project of China(No. B08043)
文摘The sensitivities of betavoltaic batteries and photovoltaic batteries to series and parallel resistance are studied.Based on the study,an electrode pattern design principle of GaAs betavoltaic batteries is proposed.GaAs PIN junctions with and without the proposed electrode pattern are fabricated and measured under the illumination of ^(63)Ni.Results show that the proposed electrode can reduce the backscattering and shadowing for the beta particles from ^(63)Ni to increase the GaAs betavoltaic battery short circuit currents effectively but has little impact on the fill factors and ideal factors.